offres d'emploi formations actualités contact accès annuaire intranet
Thèses >

Vers un modèle multi-phases et multi-composants (MPMC) de type Lattice Boltzmann Method (LBM) pour la simulation dynamique d’un fluide cryogénique dans l’eau.

Nicolas Maquignon - Manuscrit

mercredi 4 novembre 2015 à 09h00

Amphi C002


Au cours de cette thèse, un modèle LBM MPMC avec échanges thermiques est développé. Des tests d’assimilation de données et des mesures par flot optique sont réalisés en vue d’une validation. Le cadre d’application de cette thèse est celui du mélange d’un fluide cryogénique avec l’eau. Dans une première partie, un travail bibliographique rappelant l’équation de Boltzmann, ses diverses hypothèses et simplifications, ainsi que l’aspect algorithmique de la LBM sont exposés. Une comparaison entre opérateur de collision SRT et MRT est réalisée, et une simulation de phénomènes turbulents à différents nombres de Reynolds est étudiée, notamment avec le benchmark de l’instabilité de Von Karman. Dans une seconde partie, le modèle MPMC de Shan & Chen est rappelé puis étendu au cas où les échanges thermiques inter-composants sont présents. Des validations quantitatives sont faites, notamment avec le benchmark du fluide de Couette à deux phases ou à deux composants, du test de cohérence vis-à-vis de la loi de Laplace, ou encore par rapport à un benchmark faisant intervenir la conduction thermique. Des tests qualitatifs de condensations en milieu multi-composants sont proposés pour valider l’aspect des échanges thermiques entre composants en présence d’une transition de phase. Dans la troisième partie de cette thèse, une méthode de validation par assimilation de données est introduite, avec le filtrage de Kalman d’ensemble. Un test d’estimation d’état d’un fluide diphasique est réalisé, et la compatibilité du filtrage de Kalman d’ensemble par rapport au modèle LBM MPMC est évaluée. Pour la validation du comportement du modèle d’un point de vue de la présence de deux composants, un fluide de substitution (non-cryogénique) au GNL, le butane, a été choisi pour permettre des observations dans des conditions expérimentales accessibles. Puis, une plateforme expérimentale d’injection de butane liquide dans une colonne d’eau sous pression est présentée. Des images d’ombroscopie issues d’expériences de remontée de butane liquide dans de l’eau sont exposées et un algorithme de calcul de flot optique est appliqué à ces images. Une évaluation qualitative des champs de vitesses obtenus par application de cet algorithme est réalisée.