offres d'emploi formations actualités contact accès annuaire intranet
Thèses >

Estimation du rapport signal à bruit d’un signal GPS par filtrage non linéaire

Abderrahim BOURKANE

jeudi 17 décembre 2015 à 10h00

Faculté des Sciences et Techniques, Tanger, Maroc


Un signal GPS est modulé par une porteuse et est étalé par un code pseudo aléatoire. Sa puissance, qui est portée en dessous du niveau du bruit, ne peut pas être directement mesurée. Les estimateurs classiques de la littérature utilisent les paramètres statistiques du maximum de la corrélation, obtenus après le désétalement du signal pour mesurer la puissance du signal reçu. Ces estimateurs nécessitent une longue période d’intégration pour être précis. De plus, ils ne tiennent pas compte de l’effet de la fréquence Doppler et du nombre de satellites visibles sur la statistique du maximum de la corrélation. Ces effets perturbateurs faussent l’estimation de la valeur de C/N0 et limitent les applications qui utilisent cette grandeur telle que la réflectométrie des signaux GNSS

Ce travail de thèse propose un estimateur du rapport signal à bruit propre à chaque satellite, à partir d’un signal GPS L1. Pour présenter cet estimateur, nous avons adopté une approche en deux étapes. On suppose dans la première étape que le signal GPS est numérisé sur 1 bit, et on établit une fonction reliant l’amplitude du signal reçu au maximum de corrélation. Cette fonction non linéaire est déduite de l’architecture radio du récepteur GPS et des paramètres du signal qui sont : la fréquence Doppler et le déphasage du signal reçu. En effet, le rapport signal à bruit est une mesure relative, et pour pouvoir estimer l’amplitude du signal, on suppose que le bruit est blanc, gaussien, centré et de variance unitaire. La fonction proposée étant fortement non linéaire, nous proposons dans une deuxième étape, un estimateur dynamique de l’amplitude du signal, qui utilise le filtrage d’état non linéaire et les observations du maximum de la corrélation. Deux filtres sont évalués à cet effet ; le filtrage de Kalman sans parfum et le filtrage particulaire.