Sizing Optimization with Thermal and Electrical Matching of a Thermogenerator placed on the Human Body

Marianne Lossec, Bernard Multon, Hamid Ben Ahmed

SATIE UMR CNRS 8029
Ecole Normale Supérieure de Cachan
Antenne de Bretagne

IREED 2011
Lille, France, 23-24 March 2011
General context: Energy harvesting in the human environment
General context: Energy harvesting in the human environment
Conversion of heat from human body into electricity
Introduction (1/2)

- **Conversion of heat** from human body into **electricity**
- **Strong effect of thermal coupling** of the generator with its environment

Low output voltage of the generator
Conversion of heat from human body into **electricity**

- **Strong effect of thermal coupling** of the generator with its environment

- **Low output voltage** of the generator

- **Necessity** of a **boost converter** between the generator and the storage element
Aim of this study: Sizing optimization taking into account:
Aim of this study: Sizing optimization taking into account: Thermal coupling with the environnement
Aim of this study: Sizing optimization taking into account:

- **Thermal coupling** with the environment
- **Electrical coupling** with the DC-DC converter
Outline

1. Study of thermoelectric generator (TEG)
 - Thermal and electrical models of TEG
 - Thermal impedance matching

2. Study of the whole system with DC-DC converter
 - Electrical model of the converter
 - Electrical impedance matching corrected

3. System sizing optimization
Outline

1. Study of thermoelectric generator (TEG)
 - Thermal and electrical models of TEG
 - Thermal impedance matching

2. Study of the whole system with DC-DC converter
 - Electrical model of the converter
 - Electrical impedance matching corrected

3. System sizing optimization
Thermal model: simplified for low temperature difference ΔT_0

$$\Delta T_G = \frac{R_{thG}}{R_{thB} + R_{thA} + R_{thG}} \Delta T_0$$

with

$$\Delta T_0 = T_b - T_a$$
Thermal and electrical models of TEG

Thermal model: simplified for low temperature difference ΔT_0

$$\Delta T_G = \frac{R_{thG}}{R_{thB} + R_{thA} + R_{thG}} \Delta T_0 \quad \text{with} \quad \Delta T_0 = T_b - T_a$$

![Diagram of thermal model](image)

- Conduction of the skin, thermal contact
- Radiation and natural convection (or heat sink)
- Thermal resistance of the generator

With the thermoelectric module TM-450-0.8-3.0 produced by Ferrotec:

$$R_{thG} \ll R_{thB} + R_{thA}$$

⇒ **poor thermal coupling** (without heat sink) of the TEG with its environment
Thermal and electrical models of TEG

Thermal model: simplified for low temperature difference ΔT_0

Electrical model:

Electrical impedance matching:

$$U = \frac{E_G}{2} \Rightarrow P_{eM} = \frac{E_G^2}{4R_G} = \frac{(\alpha \Delta T_G)^2}{4R_G}$$
Thermal model of the heat sink

Adding a heat sink:

- Better thermal coupling between the cold side of TEG and ambient air.
Thermal model of the heat sink

Adding a heat sink:

Better thermal coupling between the cold side of TEG and ambient air

Thermal model:

Thermal resistance R_{thH} depends on:

- The captation surface area S_{th}
- The height h_d
Thermal model of the heat sink

Adding a heat sink:

- Better thermal coupling between the cold side of TEG and ambient air

Thermal model:

Thermal resistance R_{thH} depends on:
- The captation surface area S_{th}
- The height h_d

Study of Aavid heat sink (empiric law)

$$R_{thH} = \left(\frac{k_{H1}}{h_d} + k_{H2} \right) \frac{1}{\sqrt{S_{th}}}$$
Expression of the maximum electrical power P_{eM}, according to the leg length l_{th}:

$$P_{eM} = \frac{k_f \alpha_0^2 \Delta T_0^2}{16 \rho} \frac{S_{th} l_{th}}{(l_{th} + k_{env})^2}$$

With k_{env}, a coefficient depending on the presence or not of a heat sink.
Expression of the maximum electrical power P_{eM}, according to the leg length l_{th}:

$$P_{eM} = \frac{k_f \alpha_0^2 \Delta T_0^2}{16 \rho} \frac{S_{th} l_{th}}{(l_{th} + k_{env})^2}$$

With k_{env}, a coefficient depending on the presence or not of a heat sink
Thermal impedance matching

Expression of the maximum electrical power P_{eM}, according to the leg length l_{th}:

$$P_{eM} = \frac{k_f \alpha_0^2 \Delta T_0^2}{16 \rho} \frac{S_{th} l_{th}}{(l_{th} + k_{env})^2}$$

With k_{env}, a coefficient depending on the presence or not of a heat sink.

With $l_{th _opt}$ without a heat sink

With $l_{th _opt}$ with a heat sink
Expression of the maximum electrical power P_{eM}, according to the leg length l_{th}:

$$P_{eM} = \frac{k_f \alpha_0^2 \Delta T_0^2 S_{th} l_{th}}{16 \rho (l_{th} + k_{env})^2}$$

With k_{env}, a coefficient depending on the presence or not of a heat sink

Thermal impedance matching $\Rightarrow l_{th} = l_{th_opt} = k_{env}$

$R_{thG} = R_{thE} = R_{thB} + R_{thA}$ (or $R_{thB} + R_{thH}$ if presence of a heat sink)

$\Delta T_G = \frac{\Delta T_0}{2}$
Thermal impedance matching

Expression of the maximum electrical power P_{eM}, according to the leg length l_{th}:

$$P_{eM} = \frac{k_f \alpha_0^2 \Delta T_0^2 \cdot S_{th} l_{th}}{16 \rho \left(l_{th} + k_{env}\right)^2}$$

With k_{env}, a coefficient depending on the presence or not of a heat sink

Thermal impedance matching \Rightarrow $l_{th} = l_{th_opt} = k_{env}$

$R_{thG} = R_{thE} = R_{thB} + R_{thA}$ (or $R_{thB} + R_{thH}$ if presence of a heat sink)

$\Delta T_G = \frac{\Delta T_0}{2}$

Generally **not** technologically **feasible** \Rightarrow **solution** = **stacking** identical thermoelectric modules and connecting them electrically in series
Outline

1. Study of thermoelectric generator (TEG)
 - Thermal and electrical models of TEG
 - Thermal impedance matching

2. Study of the whole system with DC-DC converter
 - Electrical model of the converter
 - Electrical impedance matching corrected

3. System sizing optimization
Electrical model of the converter (1/2)

Boost converter with two **dual-gate** MOS transistors: LTC3537 (Linear Technology)

Gate charge $Q_G \propto A_{MOS}$ and channel resistance $r_{ds(on)} \propto A_{MOS}^{-1}$

In **low power**, the controlled **area** is **smaller**: $A_{MOS}=A_{MOS}/10 \Rightarrow Q_G \downarrow$ and $r_{ds(on)} \uparrow$
Electrical model of the converter (1/2)

Boost converter with two **dual-gate** MOS transistors: LTC3537 (Linear Technology)

Gate charge $Q_G \propto A_{MOS}$ and channel resistance $r_{dson} \propto A_{MOS}^{-1}$

In **low power**, the controlled area is **smaller**: $A_{MOS} = A_{MOS} / 10 \Rightarrow Q_G \downarrow$ and $r_{dson} \uparrow$

The **MOS transistors losses** taken into account are: (with $k_M = 1$ for high power $= 10$ for low power)

Conduction losses:

$$P_{cond} = k_M r_{dson} I_{IN}^2$$
Electrical model of the converter (1/2)

Boost converter with two **dual-gate** MOS transistors: LTC3537 (Linear Technology)

Gate charge $Q_G \propto A_{MOS}$ and channel resistance $r_{dson} \propto A_{MOS}^{-1}$

In **low power**, the controlled **area** is smaller: $A_{MOS} = A_{MOS}/10 \Rightarrow Q_G \downarrow$ and $r_{dson} \uparrow$

The **MOS transistors losses** taken into account are: (with $k_M = 1$ for high power, $= 10$ for low power)

- **Conduction losses:**

 $$P_{cond} = k_M r_{dson} I_{IN}^2$$

- **Control gate losses:**

 $$P_G = 2f(Q_G/k_M)V_{OUT}$$
Electrical model of the converter (1/2)

Boost converter with two **dual-gate** MOS transistors: LTC3537 (Linear Technology)

Gate charge $Q_G \propto A_{MOS}$ and channel resistance $r_{dson} \propto A_{MOS}^{-1}$

In **low power**, the controlled **area** is **smaller**: $A_{MOS} = A_{MOS}/10 \Rightarrow Q_G \downarrow$ and $r_{dson} \uparrow$

The **MOS transistors losses** taken into account are: (with $k_M = 1$ for high power, $= 10$ for low power)

- **Conduction losses:**

 \[P_{cond} = k_M r_{dson} I_{IN}^2 \]

- **Control gate losses:**

 \[P_G = 2f(Q_G/k_M)V_{OUT} \]

- **Switching losses:**

 \[P_{SW} = fV_{OUT} I_{IN} t_{SW} \]
Simulated and measured efficiency curves for $V_{\text{OUT}}=3.3\text{V}$:

discontinuity = effect of switching gate area
Simulated and measured efficiency curves for $V_{\text{OUT}}=3.3\text{V}$:

- **Discontinuity** = effect of switching gate area

- The efficiency of the converter is better when the ratio $V_{\text{OUT}}/V_{\text{IN}}$ is lower

- **Dual-gate MOS transistors:**
 \Rightarrow extends the range of the maximum converter efficiency
Electrical impedance matching corrected

- $E_G = 1.8V$
- R_G
- V_{IN}
- $V_{OUT} = 4V$
- LTC3537
Electrical impedance matching corrected

\[P_{IN} \]

\[V_{IN} = \frac{E_G}{2} \]

Maximum power of the TEG

\[V_{OUT} = 4V \]
Electrical impedance matching corrected

\[\text{Maximum power of the TEG} \]

\[V_{\text{IN}} = \frac{E_G}{2} \]

\[P_{\text{IN}} \]

\[P_{\text{LOSS}} \]

\[\text{LTC3537} \]

\[\text{STORAGE} \]

\[V_{\text{OUT}} = 4V \]
Electrical impedance matching corrected

\[V_{IN} = \frac{E_G}{2} \]

Maximum power of the TEG

\[P_{OUT} = P_{IN} - P_{LOSS} \]

⇒ Displacement of the maximum power

⇒ Electrical impedance mismatch, in relation with converter efficiency
Outline

1. Study of thermoelectric generator (TEG)
 - Thermal and electrical models of TEG
 - Thermal impedance matching

2. Study of the whole system with DC-DC converter
 - Electrical model of the converter
 - Electrical impedance matching corrected

3. System sizing optimization
Optimization methodology

Optimization algorithm based on particle swarm optimization

- **Two competing criteria:**
 - maximizing the electrical power harvested
 - minimizing the volume of the TEG
Optimization methodology

Optimization algorithm based on particle swarm optimization

- **Two competing criteria:**
 - maximizing the electrical power harvested
 - minimizing the volume of the TEG

Optimization parameters: \(S_{th}, l_{th}, \) and \(h_d \)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S_{th})</td>
<td>0</td>
<td>100cm^2</td>
</tr>
<tr>
<td>(l_{th})</td>
<td>0</td>
<td>10cm</td>
</tr>
<tr>
<td>(h_d)</td>
<td>0</td>
<td>10cm</td>
</tr>
</tbody>
</table>
Optimization methodology

Optimization algorithm based on particle swarm optimization

- **Two competing criteria:**
 - maximizing the electrical power harvested
 - minimizing the volume of the TEG

- **Optimization parameters:** S_{th}, l_{th} and h_d

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_{th}</td>
<td>0</td>
<td>100 cm2</td>
</tr>
<tr>
<td>l_{th}</td>
<td>0</td>
<td>10 cm</td>
</tr>
<tr>
<td>h_d</td>
<td>0</td>
<td>10 cm</td>
</tr>
</tbody>
</table>

- **Optimization constraint:** $V_{IN} > V_{IN_{min}} = 0.7$V for the LTC3537
Optimization methodology

Optimization algorithm based on particle swarm optimization

- **Two competing criteria:**
 - maximizing the electrical power harvested
 - minimizing the volume of the TEG

- **Optimization parameters:** S_{th}, l_{th} and h_d

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_{th}</td>
<td>0</td>
<td>100cm2</td>
</tr>
<tr>
<td>l_{th}</td>
<td>0</td>
<td>10cm</td>
</tr>
<tr>
<td>h_d</td>
<td>0</td>
<td>10cm</td>
</tr>
</tbody>
</table>

- **Optimization constraint:** $V_{IN} > V_{IN_{\text{min}}} = 0.7V$ for the LTC3537

- **Constant Parameters:**
 - The density of thermocouples ($N_{th} \propto S_{th}$)
 - Thermoelectric materials
 - Temperatures T_b and T_a
 - The technology of the heat sink
Solutions of the optimizations (1/2)

Pareto fronts

- Parameters variations

- Solutions of the optimizations
Solutions of the optimizations (1/2)

Pareto fronts

Parameters variations

- TEG+DC-DC
 - Surface area S_m (cm2)
 - Height of the TEG h_T

- TEG+DC-DC
 - Height h_n, with heat sink
 - Height h_n, no heat sink
From a given volume, adding a heat sink makes it possible to harvest more power.
From a given volume, adding a heat sink makes it possible to harvest more power.

Minimum volume due to harvested power has to compensate the converter losses.
What about the thermal and electrical impedance matching?

When P_e is maximal, $R_{thG} \neq R_{thE} = R_{thB} + R_{thA}$

\Rightarrow No Thermal impedance matching
Solutions of the optimizations (2/2)

What about the thermal and electrical impedance matching?

When P_e is maximal, $R_{thG} \neq R_{thE} = R_{thB} + R_{thA}$

\Rightarrow No Thermal impedance matching

$V_{IN} > E_G / 2$

\Rightarrow No electrical impedance matching
Solutions of the optimizations (2/2)

When P_e is maximal, $R_{thG} \neq R_{thE} = R_{thB} + R_{thA}$

⇒ No Thermal impedance matching

$V_{IN} > E_G/2$

⇒ No electrical impedance matching
Modification of the impedance matching

\[P_{\text{IN}} \rightarrow \text{REAL CONVERTER} \rightarrow P_{\text{OUT}} \]

\[E_g \rightarrow R_g \]

\[V_{\text{IN}} \rightarrow \text{TEG} \]

\[V_{\text{OUT}} = 4V \]

![Diagram of impedance matching system]

Graph:

- **Red dashed line:** \(P_{\text{OUT}}, \text{if } P_{\text{IN}} \text{ maximized} \)
- **Blue dashed line:** \(P_{\text{IN}}, \text{if } P_{\text{IN}} \text{ maximized} \)

Axes:
- **Y-axis:** Electrical power (mW)
- **X-axis:** Leg length \(l_{th} \) (cm)
Modification of the impedance matching

Electrical impedance mismatch

P\text{OUT} (if P\text{OUT} maximized) > P\text{OUT} (if P\text{IN} maximized)
Modification of the impedance matching

- Electrical impedance mismatch
 \[P_{\text{OUT}} \text{ (if } P_{\text{OUT}} \text{ maximized)} > P_{\text{OUT}} \text{ (if } P_{\text{IN}} \text{ maximized)} \]

- Thermal impedance mismatch
 \[l_{\text{th opt}} = 8 \text{ cm (and not 5 cm like in case of thermal impedance matching)} \]
We presented the study of a whole thermoelectric conversion chain incorporating a TEG with its DC-DC converter and a possible heat sink.
Conclusion

We presented the study of a whole thermoelectric conversion chain incorporating a TEG with its DC-DC converter and a possible heat sink.

The thermal and electrical models of the TEG associated with the converter model allow us to optimize the volume of the TEG in order to maximize its harvested power.
Conclusion

- We **presented** the **study** of a whole thermoelectric **conversion chain** incorporating a **TEG** with its **DC-DC converter** and a possible **heat sink**.

- The **thermal and electrical models of the TEG** associated with the **converter model** allow us to **optimize the volume of the TEG** in order to **maximize its harvested power**.

- We show that, from a given volume, **adding a heat sink** makes it possible to **harvest more power**.
Conclusion

- We presented the study of a whole thermoelectric conversion chain incorporating a TEG with its DC-DC converter and a possible heat sink.

- The thermal and electrical models of the TEG associated with the converter model allow us to optimize the volume of the TEG in order to maximize its harvested power.

- We show that, from a given volume, adding a heat sink makes it possible to harvest more power.

- The study of TEG with a real converter (including losses) shows that it might be interesting to mismatch thermally the TEG impedance and also not to work at the theoretically optimum electrical operating point by increasing the output voltage of the TEG.
Conclusion

- **We presented** the study of a whole thermoelectric conversion chain incorporating a TEG with its DC-DC converter and a possible heat sink.

- The *thermal and electrical models of the TEG* associated with the converter model allow us to **optimize the volume of the TEG** in order to **maximize its harvested power**.

- We show that, from a given volume, **adding a heat sink** makes it possible to **harvest more power**.

- The study of **TEG with a real converter (including losses)** shows that it might be interesting to **mismatch thermally the TEG impedance** and also **not to work at the theoretically optimum electrical operating point** by increasing the output voltage of the TEG.

- However, the DC-DC converter studied is not necessarily well suited, we should optimize it.