How Arduino Is Open-sourcing Industry
Arduino Day 2015 – Fablab Côte d’Opale – Calais

Matthieu PUIGT

matthieu.puigt[at]univ-littoral.fr

(1) IUT du Littoral Côte d’Opale – Dept. Génie Industriel et Maintenance – Longuenesse, FR-62698
http://www.iut-gim-stomer.fr/

(2) LISIC – ULCO – Calais, FR-62228
http://www-lisic.univ-littoral.fr/~puigt/

March 28, 2015
Introduction

- Arduino: cheap, easy to use, and sufficient performance for a large number of applications
- Open-source → Possibility to adapt (new card, shield) for a specific application
- Development of fieldbus shields (RSxxx, CAN bus, Ethernet) and communication protocol libraries (Modbus, TCP/IP)
- Early, some thought to industrial applications (e.g., [here in 2009](#), [there in 2009](#), [here in 2010](#), etc)
Introduction

- Arduino: cheap, easy to use, and sufficient performance for a large number of applications
- Open-source ➔ Possibility to adapt (new card, shield) for a specific application
- Development of fieldbus shields (RSxxx, CAN bus, Ethernet) and communication protocol libraries (Modbus, TCP/IP)
- Early, some thought to industrial applications (e.g., here in 2009, there in 2009, here in 2010, etc)
- Comments in the fora:
 1. Not robust enough (10 ways to destroy an Arduino)
 2. Hardware requirement for an electrical/industrial system (12V-24V compliant, rail-mounted, etc)
 3. Integration in an industrial system (especially integration with SCADA)
 ➔ PLCs are designed for this. 40+ years of experience. Why changing?
Introduction

- Arduino: cheap, easy to use, and sufficient performance for a large number of applications
- Open-source → Possibility to adapt (new card, shield) for a specific application
- Development of fieldbus shields (RSxxx, CAN bus, Ethernet) and communication protocol libraries (Modbus, TCP/IP)
- Early, some thought to industrial applications (e.g., here in 2009, there in 2009, here in 2010, etc)
- Comments in the fora:
 1. Not robust enough (10 ways to destroy an Arduino)
 2. Hardware requirement for an electrical/industrial system (12V-24V compliant, rail-mounted, etc)
 3. Integration in an industrial system (especially integration with SCADA)
 → PLCs are designed for this. 40+ years of experience. Why changing?

Two words about the open-source business model

- Provide an open tool for free (OS, software, plans to build a card)
- Sell a service to make it run (software/hardware installation, selling electronic cards, teaching how to use the material, etc)
Outline of the presentation

1. Robustifying Arduino and integrating it into industrial systems
 - Rugged Arduinos
 - Arduino-based PLCs

2. Arduino and manufacturing
 - Arduino in the Computer-Integrated Manufacturing pyramid
 - SCADA softwares compatible with Arduino

3. Conclusion
Rugged Arduinos

More robust open-source Arduino-like cards:

- **Ruggeduino Special Edition** ($54.95)
 - 16MHz, 8bit μ-C (like Arduino), 3.5–30V, I/O protected, Arduino form factor
 - Temperature range: -40°C / +50°C
 - Same IDE as Arduino

- **Olimex PIC32-Pinguino** (€19.95-)
 - 80 MHz, 32bit μ-C (Pinguino), 9–30V, I/O protected, Arduino form factor
 + specific UEXT connector
 - Temperature range: -25°C / +85°C
 - IDE (Pinguino) close to Arduino
 - Olimex builds other Duino products
Arduino-based PLCs

Arduino-based products with easy physical integration into industrial systems (schematics not provided!)

- All based on AVR μ-C (8 bits, 16MHz)
- Rugged (sold as is)
- Only software is open-source...
 - Industruino (from €52, from €110 for 12-24V compatibility)
 - Controllino (from €119)
 - Industrial shields (from €135)
A truly open-source Arduino-based PLC

- **OpenPLC:** http://www.openplcproject.com/
- Born as a student project
- All schematics provided, possibility to build your own (not possible to buy one for now)
- Follows the concept of modular PLCs
- Not only hardware development but also software development (we’re going to see it)
Programming an Arduino like a PLC

- Arduino use a language derived from C
- Various PLC programming languages
 - One inherited from relay hardware systems: Ladder diagram

```
void setup() {
  setupPLC();  // Setup inputs and outputs
}

void loop() {
  in(X0);      // Read Input 0
  out(Y0);     // Send to Output 0
}
```

- Development of Ladder languages compatible with Arduino
 - OpenPLC
 - Soapbox Snap
 - PLClib
 - Ladder Logic for PIC and AVR
 - Waltech Ladder
Outline of the presentation

1 Robustifying Arduino and integrating it into industrial systems
 - Rugged Arduinos
 - Arduino-based PLCs

2 Arduino and manufacturing
 - Arduino in the Computer-Integrated Manufacturing pyramid
 - SCADA softwares compatible with Arduino

3 Conclusion
Arduino in the Computer-Integrated Manufacturing pyramid

ERP

MES

SCADA

PLCs / μ-Cs (e.g., Arduino)

Sensors / Actuators

ERP = Enterprise Resource Planning
MES = Manufacturing Execution System
SCADA = Supervisory Control And Data Acquisition
SCADA softwares compatible with Arduino

- SCADAs can be directly linked with a PLC (one-to-one connexion) or through a server (mainly: OPC server).
- **OPC server for Arduino** allows the use of any SCADA software

- **Free** SCADA softwares for Arduino: ACIMUT, Visual OPC Builder
- **Open-source** SCADA softwares: Proview, ECLIPSE Scada
Outline of the presentation

1 Robustifying Arduino and integrating it into industrial systems
 • Rugged Arduinos
 • Arduino-based PLCs

2 Arduino and manufacturing
 • Arduino in the Computer-Integrated Manufacturing pyramid
 • SCADA softwares compatible with Arduino

3 Conclusion
Conclusion

- Arduino is (slowly but steadily!) open-sourcing industry
 1. Hardware
 - Open- and closed-source Arduino-based industry compliant hardware
 - Open-source PLC in development
 2. Software
 - Programming languages (Ladder)
 - Communication protocols (Modbus, TCP, OPC server)
 - SCADA (free or open-source solutions)
- Need to:
 1. Trying it
 2. Comparing it with proprietary solutions
 3. Improving it (if needed)
 4. Spreading the word

Thank you for your attention. Questions?