Blind Linear and Nonlinear Mixture Identification Using Source Sparsity Assumptions

Matthieu Puigt

LISIC - ULCO
IUT de Saint-Omer Dunkerque
matthieu.puigt@lisic.univ-littoral.fr
http://www-lisic.univ-littoral.fr/~puigt

Work done at FORTH-ICS, Heraklion, Crete, Greece

December 20, 2012
FOundation for Research and Technology – Hellas (FORTH)

- **FORTH**
 - Public institution (1983) funded by projects
 - Largest Greek research centre, strong participation in EU projects
 - Seven research institutes in four different locations, one start-up incubator, one technology transfer organization, the Crete University press, the Observatory of Skinakas
- **Institute of Computer Science (FORTH-ICS)**
 - since 1983, internationally recognised, ERCIM member, 9 laboratories
- **Signal Processing Lab (SPL)**
 - 3 permanent researchers, 7 assistant researchers and 6 post-docs
 - Since 2005: 8 European Commission, 6 national, 3 industrial projects: more than 5.1 M€ in actual funding for FORTH. 6 active projects
 - Research interest: Statistical signal processing with applications in wireless sensor networks, image/video, audio and speech processing.

M. Puigt

Blind linear and nonlinear mixture identification using source sparsity assumptions

Dec. 20, 2012
Outline of the talk

Part I
Basic introduction to blind source separation

Part II
Post-nonlinear sparse component analysis

Part III
Real-time source localization: a brief introduction
Let’s talk about linear systems

All of you know how to solve this kind of systems:

\[
\begin{align*}
2 \cdot s_1 + 3 \cdot s_2 &= 5 \\
3 \cdot s_1 - 2 \cdot s_2 &= 1
\end{align*}
\]

(1)

If we resp. define A, s, and x the matrix and the vectors:

\[
A = \begin{bmatrix}
2 & 3 \\
3 & -2
\end{bmatrix}, \quad s = [s_1, s_2]^T, \quad \text{and} \quad x = [5, 1]^T
\]

Eq. (1) begins

\[
x = A \cdot s
\]

and the solution reads:

\[
s = A^{-1} \cdot x = [1, 1]^T
\]
Let’s talk about linear systems

All of you know how to solve this kind of systems:

\[
\begin{align*}
? \cdot s_1 + ? \cdot s_2 &= 5 \\
? \cdot s_1 + ? \cdot s_2 &= 1
\end{align*}
\] (1)

If we resp. define \(A \), \(s \), and \(x \) the matrix and the vectors:

\[
A = \begin{bmatrix} ? & ? \\ ? & ? \end{bmatrix}, \quad s = [s_1, s_2]^T, \quad \text{and} \quad x = [5, 1]^T
\]

Eq. (1) begins

\[
x = A \cdot s
\]

and the solution reads:

\[
s = A^{-1} \cdot x = ?
\]
Let’s talk about linear systems

All of you know how to solve this kind of systems:

\[
\begin{aligned}
 a_{11} \cdot s_1 + a_{12} \cdot s_2 &= 5 \\
 a_{21} \cdot s_1 + a_{22} \cdot s_2 &= 1
\end{aligned}
\]

(1)

If we resp. define \(A\), \(s\), and \(x\) the matrix and the vectors:

\[
A = \begin{bmatrix}
 a_{11} & a_{12} \\
 a_{21} & a_{22}
\end{bmatrix}, \quad s = [s_1, s_2]^T, \quad \text{and} \quad x = [5, 1]^T
\]

Eq. (1) begins

\[x = A \cdot s\]

and the solution reads:

\[s = A^{-1} \cdot x = ?\]

How can we solve this kind of problem???

This problem is called **Blind Source Separation**.
Blind Source Separation problem

- N unknown sources s_j.
- One unknown operator \mathcal{A}.
- P observed signals x_i with the global relation

$$x = \mathcal{A}(s).$$

Goal: Estimating the vector s, up to some indeterminacies.

Sources $s_j(t)$ Observations $x_i(t)$ Outputs $y_k(t)$
Blind Source Separation problem

- N unknown sources s_j.
- One unknown operator \mathcal{A}.
- P observed signals x_i with the global relation

$$x = \mathcal{A}(s).$$

Goal: Estimating the vector s, up to some indeterminacies.

Sources $s_j(t)$
Observations $x_i(t)$
Outputs $y_k(t)$
Blind Source Separation problem

- N unknown sources s_j.
- One unknown operator \mathcal{A}.
- P observed signals x_i with the global relation

$$x = \mathcal{A}(s).$$

Goal: Estimating the vector s, up to some indeterminacies.

Sources $s_j(t)$ Observations $x_i(t)$ Outputs $y_k(t)$
Classes of mixtures

Most of the approaches process linear mixtures which are divided in three categories:

1. Linear instantaneous (LI) mixtures: \(x_i(t) = \sum_{j=1}^{N} a_{ij} s_j(t) \)

But more recently, interest for some problems with nonlinear mixtures:

4. Post-nonlinear (convolutive) mixtures: \(x_i(t) = f_i(\sum_{j=1}^{N} a_{ij} s_j(t)) \)
Classes of mixtures

Most of the approaches process linear mixtures which are divided in three categories:

1. Linear instantaneous (LI) mixtures: $x_i(t) = \sum_{j=1}^{N} a_{ij} s_j(t)$
2. Attenuated and delayed (AD) mixtures: $x_i(t) = \sum_{j=1}^{N} a_{ij} s_j(t - t_{ij})$

But more recently, interest for some problems with nonlinear mixtures:

4. Post-nonlinear (convolutive) mixtures: $x_i(t) = f_i(\sum_{j=1}^{N} a_{ij}(t) * s_j(t))$

Other classes of nonlinear mixtures (linear quadratic, polynomial, etc)
Classes of mixtures

Most of the approaches process linear mixtures which are divided in three categories:

1. Linear instantaneous (LI) mixtures: \(x_i(t) = \sum_{j=1}^{N} a_{ij} s_j(t) \)
2. Attenuated and delayed (AD) mixtures: \(x_i(t) = \sum_{j=1}^{N} a_{ij} s_j(t-t_{ij}) \)
3. Convolutive mixtures:
 \[x_i(t) = \sum_{j=1}^{N} \sum_{k=-\infty}^{+\infty} a_{ijk} s_j(t-t_{ijk}) = \sum_{j=1}^{N} a_{ij}(t) * s_j(t) \]

But more recently, interest for some problems with nonlinear mixtures:

4. Post-nonlinear (convolutive) mixtures:
 \[x_i(t) = f_i(\sum_{j=1}^{N} a_{ij}(t) * s_j(t)) \]
5. Other classes of nonlinear mixtures (linear quadratic, polynomial, etc)

M. Puigt Blind linear and nonlinear mixture identification using source sparsity assumptions Dec. 20, 2012 6
Classes of mixtures

Most of the approaches process linear mixtures which are divided in three categories:

1. Linear instantaneous (LI) mixtures: \(x_i(t) = \sum_{j=1}^{N} a_{ij} s_j(t) \)

2. Attenuated and delayed (AD) mixtures: \(x_i(t) = \sum_{j=1}^{N} a_{ij} s_j(t-t_{ij}) \)

3. Convolutive mixtures:
 \[
 x_i(t) = \sum_{j=1}^{N} \sum_{k=-\infty}^{+\infty} a_{ijk} s_j(t-t_{ijk}) = \sum_{j=1}^{N} a_{ij}(t) * s_j(t)
 \]

But more recently, interest for some problems with nonlinear mixtures:

4. Post-nonlinear (convolutive) mixtures: \(x_i(t) = f_i \left(\sum_{j=1}^{N} a_{ij}(t) * s_j(t) \right) \)
Classes of mixtures

Most of the approaches process linear mixtures which are divided in three categories:

1. Linear instantaneous (LI) mixtures: \(x_i(t) = \sum_{j=1}^{N} a_{ij} s_j(t) \)

2. Attenuated and delayed (AD) mixtures: \(x_i(t) = \sum_{j=1}^{N} a_{ij} s_j(t-t_{ij}) \)

3. Convolutive mixtures:
\[
 x_i(t) = \sum_{j=1}^{N} \sum_{k=-\infty}^{+\infty} a_{ijk} s_j(t-t_{ijk}) = \sum_{j=1}^{N} a_{ij}(t) * s_j(t)
\]

But more recently, interest for some problems with nonlinear mixtures:

4. Post-nonlinear (convolutive) mixtures: \(x_i(t) = f_i \left(\sum_{j=1}^{N} a_{ij}(t) * s_j(t) \right) \)

5. Other classes of nonlinear mixtures (linear quadratic, polynomial, etc)
How to solve Blind Source Separation?

Three main families of methods:

1. **Independent Component Analysis (ICA):** Sources are statistically independent, stationary and at most one of them is Gaussian (in their basic versions).

2. **Sparse Component Analysis (SCA):** Sparse sources (i.e. most of the samples are null (or close to zero)). Purpose of this seminar

3. **Non-negative Matrix Factorization (NMF):** Both sources et mixtures are positive, with possibly sparsity constraints.
Sparse Component Analysis (1)

- Can process **underdetermined mixtures** (i.e. more sources than observations)

![Sparse Component Analysis Graph](image)
Sparse Component Analysis (1)

- Can process underdetermined mixtures (i.e. more sources than observations)
- If source signals are sparse in an analysis domain (e.g. time, Fourier, time-frequency, wavelet domains)
 \[\forall t, \exists k \in \{1 \ldots P\}, \forall i \in \{1 \ldots N\}, \ x_i(t) = \sum_{j=1}^{N} a_{ij} s_j(t) \approx a_{ik} s_k(t) \]

Sparsity assumptions:
- Sources are disjoint orthogonal (WDO)
- BSS \sim\text{ clustering problem} (Jourjine et al., 2000)
Sparse Component Analysis (1)

- Can process underdetermined mixtures (i.e. more sources than observations)
- If source signals are sparse in an analysis domain (e.g. time, Fourier, time-frequency, wavelet domains)
 \[\forall t, \exists k \in \{1 \ldots P\}, \forall i \in \{1 \ldots N\}, \quad x_i(t) = \sum_{j=1}^{N} a_{ij} s_j(t) \simeq a_{ik} s_k(t) \]

Sparsity assumptions:

1. Sources are disjoint orthogonal (WDO)
2. BSS \(\simeq\) clustering problem (Jourjine et al., 2000)
3. Sources overlap, except if a few zones (to find) where only one of them is active (Deville et al., 2001–2012)
Sparse Component Analysis (1)

- Can process **underdetermined mixtures** (i.e. more sources than observations)
- If source signals are sparse in an analysis domain (e.g. time, Fourier, time-frequency, wavelet domains)

\[\forall t, \; \exists k \in \{1 \ldots P\}, \; \forall i \in \{1 \ldots N\}, \; x_i(t) = \sum_{j=1}^{N} a_{ij} s_j(t) \simeq a_{ik} s_k(t) \]

Sparsity assumptions:

1. Sources are disjoint orthogonal (WDO)
2. BSS \(\simeq \) clustering problem (Jourjine et al., 2000)
3. Sources overlap, except if a few zones (to find) where only one of them is active (Deville et al., 2001–2012)
Sparse Component Analysis (1)

- Can process **underdetermined mixtures** (i.e. more sources than observations)
- If source signals are sparse in an analysis domain (e.g. time, Fourier, time-frequency, wavelet domains)

\[
\forall t, \exists k \in \{1 \ldots P\}, \forall i \in \{1 \ldots N\}, \quad x_i(t) = \sum_{j=1}^{N} a_{ij} s_j(t) \approx a_{ik} s_k(t)
\]

Sparsity assumptions:

1. Sources are disjoint orthogonal (WDO)
2. BSS ≃ clustering problem (Jourjine et al., 2000)
3. Sources overlap, except if a few zones (to find) where only one of them is active (Deville et al., 2001–2012)
Sparse Component Analysis (1)

- Can process underdetermined mixtures (i.e. more sources than observations)
- If source signals are sparse in an analysis domain (e.g. time, Fourier, time-frequency, wavelet domains)

\[\forall t, \exists k \in \{1 \ldots P\}, \forall i \in \{1 \ldots N\}, \quad x_i(t) = \sum_{j=1}^{N} a_{ij} s_j(t) \approx a_{ik} s_k(t) \]

Sparsity assumptions:

1. Sources are disjoint orthogonal (WDO)
2. BSS \(\approx\) clustering problem (Jourjine et al., 2000)
3. Sources overlap, except if a few zones (to find) where only one of them is active (Deville et al., 2001–2012)
Sparse Component Analysis (1)

- Can process **underdetermined mixtures** (i.e. more sources than observations)
- If source signals are sparse in an analysis domain (e.g. time, Fourier, time-frequency, wavelet domains)

\(\forall t, \; \exists k \in \{1 \ldots P\}, \; \forall i \in \{1 \ldots N\}, \; x_i(t) = \sum_{j=1}^{N} a_{ij} s_j(t) \approx a_{ik} s_k(t) \)

Sparsity assumptions:

1. Sources are disjoint orthogonal (WDO)
2. BSS \(\approx \) clustering problem (Jourjine et al., 2000)
3. Sources overlap, except if a few zones (to find) where only one of them is active (Deville et al., 2001–2012)
Sparse Component Analysis (1)

- Can process **underdetermined mixtures** (i.e. more sources than observations)
- If source signals are sparse in an analysis domain (e.g. time, Fourier, time-frequency, wavelet domains)

\[\forall t, \exists k \in \{1 \ldots P\}, \forall i \in \{1 \ldots N\}, \quad x_i(t) = \sum_{j=1}^{N} a_{ij} s_j(t) \approx a_{ik} s_k(t) \]

Sparsity assumptions:

1. Sources are disjoint orthogonal (WDO)
2. BSS \(\approx\) clustering problem (Jourjine et al., 2000)
3. Sources overlap, except if a few zones (to find) where only one of them is active (Deville et al., 2001–2012)
4. \(2 \leq Q < P\) sources are always active at each time (Cichocki et al., 2004–2006)
Sparse component analysis (2)

Structure

Most of the SCA approaches follow the same structure:

1. Jointly sparsifying the observations $x_i(t)$
2. Estimating the mixing parameters:
 - e.g. by finding single-source zones using the ratio of observations (Deville et al., 2001–2006), correlation (Deville et al., 2004–2012), PCA (Arberet et al., 2006–2010), the real and imaginary parts of the observations (Reju et al., 2010), etc...
 - clustering estimates of the mixing parameters in the above zones (DEMIX, Selective K-means and K-medians, etc)
3. Estimating the sources (as an inverse problem)
As BSS is generic, SCA methods may be applied in numerous applications:

Audio domain

- **Source cancelation (karaoke-like application)**
 - Observation 1
 - Observation 2
 - Output "without singer"

- **Separation for re-spatialization of the sound**
 - Example (SiSEC 2008): Observations
 - Output 1
 - Output 2
 - Output 3

- **Audio enhancement (improving the perceptual sound of a speaker by removing the surrounding noise)**
 - Example (SiSEC 2010): Observations
 - Output 1
 - Output 2
Applications

As BSS is generic, SCA methods may be applied in numerous applications:

Astrophysical dust spectra from hyperspectral datacubes

From Berné et al. (2007–2009) and Puigt et al. (2009).
Applications

As BSS is generic, SCA methods may be applied in numerous applications:

Images (Meganem et al., 2010)
Part I
Basic introduction to blind source separation

Part II
Post-nonlinear sparse component analysis

Part III
Real-time source localization: a brief introduction

This work has been published in:

Post-nonlinear SCA: motivation

- Most of the people use their mobile device (e.g. smartphone) as a notebook: capturing images, videos, sounds and sharing them (social networks, streaming video websites, etc)

- But mobile devices are mobile:
 - Cheap and small microphone(s) & loudspeakers
 - Provide nonlinearities in sound recording & restitution
 - Example: live recordings (ex: found on Youtube)
 - Observed sound signals may be written as post-nonlinear (PNL) convolutive mixtures of source signals: \(x_i(t) = f_i \left(\sum_{j=1}^{N} a_{ij}(t) \ast s_j(t) \right) \)

- To tackle this problem, the literature provides:
 1. Several ICA methods (limited to determined mixtures)

- As we know that SCA outperforms ICA (Deville & Puigt, 2007), how to extend SCA methods to PNL convolutive mixtures?
- In a first stage, how to extend LI-SCA methods to (instantaneous) PNL mixtures \(x_i(t) = f_i \left(\sum_{j=1}^{N} a_{ij} \cdot s_j(t) \right) \)?
Mirror structure in PNL-ICA ($P \geq N$)

1. Estimate the inverse g_i of the NL functions f_i
2. Linearize the mixtures
3. Estimate A^{-1} and deduce the sources

What about the sparsifying transform?
Not a good idea (not sparser observations)
Structure of the proposed method(s)

- **Mirror** structure in PNL-ICA \((P \geq N)\)
 1. Estimate the inverse \(g_i\) of the NL functions \(f_i\)
 2. Linearize the mixtures
 3. Estimate \(A^{-1}\) and deduce the sources

- **Mirror** structure in PNL-SCA \((P \geq N\) or \(P < N)\)
 1. Estimate the NL functions \(f_i\)
 1. Cut \(x_i(t)\) in temporal analysis zones \(T\)
 2. Find temporal single-source zones
 3. Estimate NL mappings
 2. Linearize the mixtures (as an inverse problem)
 3. Estimate \(A\) (e.g. apply a LI-SCA method)
 4. Estimate the sources (as an inverse problem)

Mirror structure in PNL-ICA \((P \geq N)\)

- Estimate the inverse \(g_i\) of the NL functions \(f_i\)
- Linearize the mixtures
- Estimate \(A^{-1}\) and deduce the sources
Structure of the proposed method(s)

- **Mirror** structure in PNL-ICA ($P \geq N$)
 1. Estimate the inverse g_i of the NL functions f_i
 2. Linearize the mixtures
 3. Estimate A^{-1} and deduce the sources

- **Mirror** structure in PNL-SCA ($P \geq N$ or $P < N$)
 1. Estimate the NL functions f_i
 1. Cut $x_i(t)$ in temporal analysis zones T
 2. Find temporal single-source zones
 3. Estimate NL mappings
 2. Linearize the mixtures (as an inverse problem)
 3. Estimate A (e.g. apply a LI-SCA method)
 4. Estimate the sources (as an inverse problem)

What about the sparsifying transform?

Not a good idea (not sparser observations) ⟷ application: speech signals
Geometrical point of view

Let us imagine that, in one zone, only one source, say s_k, is active...

\[
\forall i \in \{1, \ldots, P\} \quad x_i(t) = f_i(a_{ik}s_k(t)) \Rightarrow s_k(t) = \frac{f_i^{-1}(x_i(t))}{a_{ik}}
\]

and

\[
x_i(t) = f_i\left(\frac{a_{ik}}{a_{1k}} f_i^{-1}(x_1(t))\right) = \phi_{ik}(x_1(t))
\]

Questions:

- How to find single-source zones?
- How to estimate ϕ_{ik}?
In linear mixtures, a source is isolated iff observations are proportional (correlation – Deville & Puigt, 2007)

In PNL mixtures, need to measure the nonlinear correlation between observations.

Done using mutual information (Dionisio et al., 2004)

\[
I(x) = -\mathbb{E} \left\{ \log \frac{\prod_{i=1}^{P} P_{x_i}(x_i)}{P_x(x)} \right\}
\]

which may be normalised as

\[
I_{\text{norm}}(x) = \sqrt{1 - e^{-2I(x)}}.
\]

This implies that sources are mutually independent (✔️ for speech—Puigt et al., 2009)
Single-source confidence measures (2)
Manifold learning based measures (Puigt et al., 2012a)

- Alternative to mutual information
- If the NL functions are smooth, then ϕ_{ik} are smooth and **locally linear**
 - We can *locally* apply linear measures (Manifold learning)
- Linear Tangent Space Approximation (LTSA—van der Maaten et al., 2009) approximates the manifold around a value by its tangent in this point

1. We consider each point t_i of a zone \mathcal{T} and we find its K-NN
2. We apply a linear SSCM in this neighbourhood
 - correlation (Deville & Puigt, 2007): $C_{x_1,x_j}(t_i)$
 - ratio of eigenvalues (Arberet et al., 2010): $R(t_i) = \frac{\lambda_1(t_i)}{\sum_{j=1}^{K} \lambda_j(t_i)}$

- *Global* single-source confidence measure as the geometric mean of all the local SSCMs, respectively denoted $C(x)$ and $R(x)$
Finally...

We look for zones \mathcal{T} such that $\text{SSCM}(x) > 1 - \varepsilon_1$

Case of non-null unactive sources

- Problem may appear if inactive sources are constant but non-zero as $x_i(t) = f_i(a_{ik}s_k(t) + \alpha_i(T))$ where $\alpha_i(T) = \sum_{j \neq k} a_{ij}s_j$

- Not a problem in Linear mixtures where observations may be centered...

- If all $f_i(0) = 0$ (not limiting assumption), we discard all the estimated curves $\hat{\phi}_{ik}$ which do not satisfy $|\hat{\phi}_{ik}(0)| < \varepsilon_2$.
Functional data analysis and clustering (1)

- Different single-source zones may lead to scattered functions associated with the *same* source
- Interest to cluster all these zones in order to get an accurate estimate of the nonlinear mappings ϕ_{ik}
- Previously proposed methods also clustered data:
 1. Theis and Amari: geometrical preprocessing sensitive to noise or non-ideal single source zones
 2. Van Vaerenbergh and Santamaría: spectral clustering with curve distances limitations and which does not allow the curves to intersect (while all $f_i(0) = 0$) \Rightarrow additional curve shape assumptions
- We propose of taking advantage of the single-source zones: we estimate some parameters which adequately describe each scattered function and we cluster them.
- In particular, we test two families of methods:
 1. We use a classical functional data clustering method
 2. We propose a new approach well-suited to the considered problem.
Functional data analysis and clustering (2)

Filtering functional data clustering

Based on B-spline approximation (Abraham et al., 2003): we approximate any nonlinear function with respect to a basis of polynomials

1. Select all the single-source zones and fix some knots locations
2. In each above zone, estimate $\hat{\phi}_{ik}$ using B-splines (all the B-spline coefficients have the same meaning and describe each curve shape)
3. Cluster the B-spline coefficients, in order to cluster the curves (K-medians)

Proposed method (Puigt et al., 2012a)

Based on manifold learning around 0

1. For each zone, find the K-NN points around 0
2. Estimate the linear DOA in each zone with an approach of the literature (e.g. based on correlation or PCA)
3. Cluster these estimated DOAs (K-medians)
Final curve estimation and next steps of the separation approach

- We finally got separated functions that we e.g. can estimate thanks to B-splines, with much more knots and not-fixed locations.
- We can apply one approach of the literature to invert the nonlinearities (change the curves in lines).
- We then get a linear problem for which the mixing parameters can be estimated (slopes of the obtained lines).
- But we only focused on the nonlinearities estimation because “it is of major importance for solving the BSS problem.”
- Let us see an example!
Example

- $N = 3$ sources (5 s, $F_s = 20$ kHz, silent parts) and $P = 2$ sensors
- PNL mixture: $A = \begin{bmatrix} 1 & 1 & 0.9 \\ -0.9 & 0.5 & 1 \end{bmatrix}$ and $\begin{cases} f_1(t) = \tanh(t) + t \\ f_2(t) = \tanh(10t) \end{cases}$
- Mutual information estimation with 100 samples per analysis zone, $\varepsilon_1 = 0.01$, $\varepsilon_2 = 0.1$
Despite the strong NL, we find single-source zones
Example

- \(N = 3 \) sources (5 s, \(F_s = 20 \text{ kHz} \), silent parts) and \(P = 2 \) sensors
- PNL mixture: \(A = \begin{bmatrix} 1 & 1 & 0.9 \\ -0.9 & 0.5 & 1 \end{bmatrix} \) and \(\begin{cases} f_1(t) = \tanh(t) + t \\ f_2(t) = \tanh(10t) \end{cases} \)
- Mutual information estimation with 100 samples per analysis zone, \(\epsilon_1 = 0.01, \epsilon_2 = 0.1 \)
- FDC technique: \(\xi_i = -1.5 + 0.3i \) for \(i \in \{0, \ldots, 10\} \) with B-splines of degree 4
Example

On the influence of SSCMs

\[x_1(t) \]

\[x_2(t) \]
Example

Clustered data
Example

- $N = 3$ sources (5 s, $F_s = 20$ kHz, silent parts) and $P = 2$ sensors
- PNL mixture: $A = \begin{bmatrix} 1 & 1 & 0.9 \\ -0.9 & 0.5 & 1 \end{bmatrix}$ and $\begin{cases} f_1(t) = \tanh(t) + t \\ f_2(t) = \tanh(10t) \end{cases}$
- Mutual information estimation with 100 samples per analysis zone, $\varepsilon_1 = 0.01$, $\varepsilon_2 = 0.1$
- FDC technique: $\xi_i = -1.5 + 0.3i$ for $i \in \{0, \ldots, 10\}$ with B-splines of degree 4
- Accurate classification and estimation, MSE: $2.5e-4$, $5.3e-5$, and $2.1e-5$
Example

- \(N = 3 \) sources (5 s, \(F_s = 20 \) kHz, silent parts) and \(P = 2 \) sensors
- PNL mixture: \(A = \begin{bmatrix} 1 & 1 & 0.9 \\ -0.9 & 0.5 & 1 \end{bmatrix} \) and \(\begin{cases} f_1(t) = \tanh(t) + t \\ f_2(t) = \tanh(10t) \end{cases} \)
- Mutual information estimation with 100 samples per analysis zone, \(\varepsilon_1 = 0.01, \varepsilon_2 = 0.1 \)
- FDC technique: \(\xi_i = -1.5 + 0.3i \) for \(i \in \{0, \ldots, 10\} \) with B-splines of degree 4
- Accurate classification and estimation, MSE: 2.5e-4, 5.3e-5, and 2.1e-5

Detailed performance of the proposed approaches (Puigt et al., 2012b)

We performed many tests (several NL functions, several mixing matrices while method’s parameters vary) which show that:

- \(I_{\text{norm}}(x) \) and \(C(x) \) are better-suited than \(R(x) \)
- Our manifold-learning clustering approaches are more flexible than B-spline functional data clustering one
Conclusion and future work

- A general framework for extending linear SCA to PNL mixtures (and even more general NL mixtures, see Puigt et al., 2012a)
- Estimation of the non-linearities combines single-source zones with functional data clustering
- We proposed some Manifold-learning-based techniques for both tasks
- We also tested classical measures (mutual information and B-splines functional data clustering)
- Our results show that our approaches allow an accurate estimation of the nonlinearities
- We still have to invert them
 - May be done with an approach of the literature
 - Or with a future proposed method...
- Our approach restricted to signals which are sparse in the time domain
 ➡ not well-suited to music
- Still need to investigate PNL convolutive mixtures
Part I
Basic introduction to blind source separation

Part II
Post-nonlinear sparse component analysis

Part III
Real-time source localization: a brief introduction

This work has been published in:

- Journal paper just submitted to IEEE TASLP
Motivation
Motivation
Motivation
Motivation

Microphone Arrays

M. Puigt

Blind linear and nonlinear mixture identification using source sparsity assumptions

Dec. 20, 2012
Microphone arrays

Geometry

Linear arrays

Simple...
Microphone arrays

Geometry

Linear arrays

- Simple...
- But ambiguous!
Microphone arrays

Geometry

Circular arrays
Remove ambiguities!
Microphone arrays

Propagation Models

Reverberant Model

Time domain

\[x_i(t) = \sum_{g=1}^{P} h_{ig}(t) \ast s_g(t) + n_i(t) \]

Time-Frequency (TF) domain

\[X_i(t, \omega) = \sum_{g=1}^{P} H_{ig}(\omega) \cdot S_g(t, \omega) + N_i(t, \omega) \]
State of the Art

Single source localization

Based on Time difference of arrival

- the GCC family [Knapp 1976]
State of the Art

Single source localization

Based on Time difference of arrival
- the GCC family [Knapp 1976]

Multiple source localization

Based on statistics
- beamforming (2nd order statistics — e.g. multiple signal classification (MUSIC)) [Argentieri 2007]
- Independent component analysis (2nd order or higher-order statistics) [Lombard 2008]

Using the sparsity paradigm
- Sparse component analysis (SCA) with W-disjoint orthogonality [Swartling 2006]
- Sparse component analysis with single-source confidence measure (framework of the present work)
Single sound source localization using a circular microphone array [Karbasi 2007]
Single sound source localization using a circular microphone array [Karbasi 2007]
Single sound source localization using a circular microphone array [Karbasi 2007]

\[\tau_{i,i+1}(\theta) \]

\[G^{\theta}_{i,i+1}(\omega) = \angle R_{i,i+1}(\omega) = e^{-j\omega \tau_{i,i+1}(\theta)} \]
Single sound source localization using a circular microphone array [Karbasi 2007]

\[\tau_{i,i+1}(\phi) = \frac{l\sin(\beta - \phi + (i-1)\alpha)}{c} \]

\[G_{i,i+1}^\theta(\omega) = \angle R_{i,i+1}(\omega) = e^{-j\omega \tau_{i,i+1}(\theta)} \]
Single sound source localization using a circular microphone array [Karbasi 2007]

\[\tau_{i,i+1}(\phi) = \frac{l \sin(\beta - \phi + (i-1)\alpha)}{c} \]

\[G_{i,i+1}^{\theta}(\omega) = \angle R_{i,i+1}(\omega) = e^{-j\omega \tau_{i,i+1}(\theta)} \]

Phase rotation factor:
\[\text{PRF}_{m_i \rightarrow m_1}(\phi) = e^{-j\omega(\tau_{1,2}(\phi) - \tau_{i,i+1}(\phi))} \]
Single sound source localization using a circular microphone array [Karbasi 2007]

\[
\tau_{i,i+1}(\phi) = \frac{l \sin(\beta - \phi + (i-1)\alpha)}{c}
\]

\[
G_{i,i+1}^\theta(\omega) = \angle R_{i,i+1}(\omega) = e^{-j\omega \tau_{i,i+1}(\theta)}
\]

Phase rotation factor:
\[
PRF_{m_i \rightarrow m_1}(\phi) = e^{-j\omega (\tau_{1,2}(\phi) - \tau_{i,i+1}(\phi))}
\]

Circular integrated cross spectrum:
\[
CICS(\phi) \triangleq \sum_{i=1}^{M} PRF_{m_i \rightarrow m_1}(\phi) G_{i,i+1}^\theta(\omega)
\]
Single sound source localization using a circular microphone array [Karbasi 2007]

- \(\tau_{i,i+1}(\phi) = \frac{l \sin(\beta - \phi + (i-1)\alpha)}{c} \)
- \(G_{i,i+1}^\theta(\omega) = \angle R_{i,i+1}(\omega) = e^{-j\omega \tau_{i,i+1}(\theta)} \)
- Phase rotation factor:
 \[\text{PRF}_{m_i \rightarrow m_1}(\phi) = e^{-j\omega(\tau_{1,2}(\phi) - \tau_{i,i+1}(\phi))} \]
- Circular integrated cross spectrum:
 \[\text{CICS}(\phi) \triangleq \sum_{i=1}^{M} \text{PRF}_{m_i \rightarrow m_1}(\phi) G_{i,i+1}^\theta(\omega) \]
 \[\hat{\theta} = \arg \max_{0 \leq \phi < 2\pi} |\text{CICS}(\phi)|. \]
Multiple Sound Source localization method

- If we combine the linear SSCM (e.g. the correlation) with the above single-source localization approach, we provide a real-time multiple-source localization method (Pavlidi et al., 2012a).

Algorithm:
1. We consider an history length of the signal (typically 1 s)
2. We cut it in frames (typically 2048 points)
3. We compute a FFT on each frame
4. We find Constant-time single-source zones (Puigt & Deville, 2007)
5. We estimate the associated DOA in each of these zones
6. We derive a (smoothed) histogram of the above DOAs
Multiple Sound Source localization method

- If we combine the linear SSCM (e.g. the correlation) with the above single-source localization approach, we provide a real-time multiple-source localization method (Pavlidi et al., 2012a).

Algorithm:

1. We consider an history length of the signal (typically 1 s)
2. We cut it in frames (typically 2048 points)
3. We compute a FFT on each frame
4. We find Constant-time single-source zones (Puigt & Deville, 2007)
5. We estimate the associated DOA in each of these zones
6. We derive a (smoothed) histogram of the above DOAs
7. We count the number of sources and we estimate their actual DOAs
Source counting

- We proposed 3 methods for source counting (Pavlidi et al., 2012b)
- But only the most efficient one is here described
- Based on Matching Pursuit (model the histogram as linear combination of pulses)

Define $\gamma = [\gamma_i], i = 1, \ldots, P_{\text{MAX}}$.

Correlate the source atom with the histogram

Detect highest peak, set $i = 1$

Calculate its contribution:

$$\delta_i = \sum_j \frac{y_{i,j} - y_{i+1,j}}{y_{1,j}}$$

If $\delta_i \geq \gamma_i$, remove it, increment i.

Continue iteratively until $\delta_i < \gamma_i$ (or $i = P_{\text{MAX}}$)
Source counting

- We proposed 3 methods for source counting (Pavlidi et al., 2012b)
- But only the most efficient one is here described
- Based on Matching Pursuit (model the histogram as linear combination of pulses)

![Direction of Arrival (degrees) vs. Cardinality](chart.png)

- Define $\gamma = [\gamma_i], i = 1, \cdots P_{\text{MAX}}$.
- Correlate the source atom with the histogram
- Detect highest peak, set $i = 1$
- Calculate its contribution:
 $$\delta_i = \sum_j \frac{y_{i,j} - y_{i+1,j}}{y_{1,j}}$$
- If $\delta_i \geq \gamma_i$, remove it, increment i.
- Continue iteratively until $\delta_i < \gamma_i$ (or $i = P_{\text{MAX}}$)
Source counting

- We proposed 3 methods for source counting (Pavlidi et al., 2012b)
- But only the most efficient one is here described
- Based on Matching Pursuit (model the histogram as linear combination of pulses)

![Histogram with peaks]

- Define $\gamma = [\gamma_i], i = 1, \cdots P_{\text{MAX}}$.
- Correlate the source atom with the histogram
- Detect highest peak, set $i = 1$
- Calculate its contribution: $\delta_i = \sum_j \frac{y_{ij} - y_{i+1,j}}{y_{1,j}}$
- If $\delta_i \geq \gamma_i$, remove it, increment i.
- Continue iteratively until $\delta_i < \gamma_i$ (or $i = P_{\text{MAX}}$)
Source counting

- We proposed 3 methods for source counting (Pavlidi et al., 2012b)
- But only the most efficient one is here described
- Based on Matching Pursuit (model the histogram as linear combination of pulses)

\[\gamma = [\gamma_i], i = 1, \ldots P_{\text{MAX}}. \]

- Correlate the source atom with the histogram
- Detect highest peak, set \(i = 1 \)
- Calculate its contribution:
 \[\delta_i = \sum_j \frac{y_{i,j} - y_{i+1,j}}{y_{1,j}} \]
- If \(\delta_i \geq \gamma_i \), remove it, increment \(i \).
- Continue iteratively until \(\delta_i < \gamma_i \)
 (or \(i = P_{\text{MAX}} \))
Source counting

- We proposed 3 methods for source counting (Pavlidi et al., 2012b)
- But only the most efficient one is here described
- Based on Matching Pursuit (model the histogram as linear combination of pulses)

- Define $\gamma = [\gamma_i], i = 1, \cdots P_{\text{MAX}}$.
- Correlate the source atom with the histogram
- Detect highest peak, set $i = 1$
- Calculate its contribution:
 $$\delta_i = \sum_j \frac{y_{i,j} - y_{i+1,j}}{y_{1,j}}$$
- If $\delta_i \geq \gamma_i$, remove it, increment i.
- Continue iteratively until $\delta_i < \gamma_i$ (or $i = P_{\text{MAX}}$)
Source counting

- We proposed 3 methods for source counting (Pavlidi et al., 2012b)
- But only the most efficient one is here described
- Based on Matching Pursuit (model the histogram as linear combination of pulses)

- Define $\gamma = [\gamma_i], i = 1, \cdots P_{MAX}$.
- Correlate the source atom with the histogram
- Detect highest peak, set $i = 1$
- Calculate its contribution:
 $\delta_i = \sum_j \frac{y_{i,j} - y_{i+1,j}}{y_{1,j}}$
- If $\delta_i \geq \gamma_i$, remove it, increment i.
- Continue iteratively until $\delta_i < \gamma_i$
 (or $i = P_{MAX}$)
Source counting

- We proposed 3 methods for source counting (Pavlidi et al., 2012b)
- But only the most efficient one is here described
- Based on Matching Pursuit (model the histogram as linear combination of pulses)

Define $\gamma = [\gamma_i], i = 1, \ldots P_{\text{MAX}}$.

Correlate the source atom with the histogram

Detect highest peak, set $i = 1$

Calculate its contribution:

$$\delta_i = \sum_j \frac{y_{i,j} - y_{i+1,j}}{y_{1,j}}$$

If $\delta_i \geq \gamma_i$, remove it, increment i.

Continue iteratively until $\delta_i < \gamma_i$ (or $i = P_{\text{MAX}}$)
Source counting

- We proposed 3 methods for source counting (Pavlidi et al., 2012b)
- But only the most efficient one is here described
- Based on Matching Pursuit (model the histogram as linear combination of pulses)

\[\gamma = [\gamma_i], \ i = 1, \cdots P_{\text{MAX}}. \]

Correlate the source atom with the histogram

Detect highest peak, set \(i = 1 \)

Calculate its contribution:

\[\delta_i = \sum_j \frac{y_{i,j} - y_{i+1,j}}{y_{1,j}} \]

If \(\delta_i \geq \gamma_i \), remove it, increment \(i \).

Continue iteratively until \(\delta_i < \gamma_i \) (or \(i = P_{\text{MAX}} \))

![Graph showing direction of arrival versus cardinality](image)
Final DOA estimation

- Two proposed methods: taking the indices of the highest value of the peaks or using Matching Pursuit (Griffin et al., 2012)
- Key idea: The width of the above pulses is really important for getting accurate estimates (its shape may vary with the mixing conditions).
- Ideally, its optimal width should be estimated from the histogram (but time consuming)
 - Combine two widths (was shown to be an acceptable trade-off)

The whole method runs 55% real-time!
Performance (1)

DOA estimation accuracy

- Simulations (6 sources, additive white noise, $T_{60} = 0.25$ s, room size: $4m \times 6m \times 3m$, 8 microphones) and comparison with Wideband Music, ICA–GSCT, and WDO-based method.

- Our approach is the less computational demanding (2.6E6 vs. between 3.9E6 & 35E6 operations)
Performance (1)

DOA estimation accuracy

- Simulations (6 sources, additive white noise, $T_{60} = 0.25$ s, room size: $4m \times 6m \times 3m$, 8 microphones) and comparison with Wideband Music, ICA–GSCT, and WDO-based method.

- Our approach is the less computational demanding (2.6E6 vs. between 3.9E6 & 35E6 operations)...

- But it outperforms all the methods of the litterature except the WDO one (perf. criterion: MAEE)
Performance (1)

DOA estimation accuracy

- Simulations (6 sources, additive white noise, $T_{60} = 0.25$ s, room size: $4m \times 6m \times 3m$, 8 microphones) and comparison with Wideband Music, ICA–GSCT, and WDO-based method.
- Our approach is the less computational demanding (2.6E6 vs. between 3.9E6 & 35E6 operations)...
- But it outperforms all the methods of the literature except the WDO one (perf. criterion: MAEE)
- It outperforms WDO in a 2-sources scenario
Performance (2)

Source counting accuracy

- Same simulated environment
- 4 intermittent sources
- Different history lengths (responsiveness of the system)
- Different SNR conditions
- We measure a success rate of good source number estimation

<table>
<thead>
<tr>
<th>History length (s)</th>
<th>SNR (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>0.25s</td>
<td>44.1%</td>
</tr>
<tr>
<td>0.5s</td>
<td>61.2%</td>
</tr>
<tr>
<td>1s</td>
<td>82.1%</td>
</tr>
</tbody>
</table>
Performance (3)

Experiments in real environment

- Real speakers, static or moving around the array, who speak continuously.
- Typical office room (same dimension as in simulations—4m × 6m × 3m) with A/C units (SNR ≃ 15 dB).
- 8 omnidirectional Shure SM93 microphones, a TASCAM US2000 8-channel USB sound card, a Standard PC, Intel 3.00 GHz Core 2 CPU, 4 GB RAM, signal processing software in C++ and user interface in C#.
- Good tracking of the sources.

![Graph showing Direction of Arrival (degrees) vs. Time (s) for different speakers.](image)
Conclusion

- Real-time multiple source counting and localization method (55% of the available time)
- Source sparsity (including WDO assumption) was shown to help getting good performance (even if the acoustic model is not that realistic!)
- SSCM helps to get more accurate DOAs and to be much faster!
- Left available time may be used e.g. for speaker diarization or separation
- Effects of hardware (cheap microphones)?
Thank you for your attention

Questions?