The Global Krylov subspace methods and Tikhonov regularization for image restoration

Abderrahman BOUHAMIDI
(joint work with Khalide Jbilou)

Université du Littoral Côte d’Opale
LMPA, CALAIS-FRANCE
bouhamidi@lmpa.univ-littoral.fr

LISIC, 27 Janvier 2011
Outline

1. Introduction
2. Estimation of the point spread function
3. Kronecker product approximation
4. Tikhonov regularization
5. Krylov subspace methods for solving the Sylvester matrix equation
6. The generalized cross-validation method for Tikhonov regularization
7. Convex optimization problem and conditional gradient Tikhonov method
8. Numerical examples
1. Introduction

- The problem of image restoration consists of the reconstruction of an original image that has been digitized and has been degraded by a blur and an additive noise.

- This problem may be formulated by the following linear model (Andrews (1977), Jain (1989), ...)

\[
g(i,j) = (f * h)(i,j) + \nu(i,j) = \sum_{l,k} f(l,k)h(i-l,k-n) + \nu(i,j),
\]

where

- \(f \) represents the true image,
- \(h \) is the Point Spread Function (PSF),
- \(\nu \) is the additive noise
- \(g \) is the degraded image.

- Image restoration techniques apply an inverse procedure to obtain an estimate of the original image.
1. Introduction

- Using the Fourier transform, the problem of image restoration may be reformulated as follows

\[\hat{g}(i,j) = \hat{h}(i,j) \cdot \hat{f}(i,j) + \hat{\nu}(i,j). \]

- The problem may also be modeled in a matrix-vector form as

\[g = Hx + n. \]

- \(x = \text{vec}(X) \): true image \(X \), \(g = \text{vec}(G) \): distorted image \(G \) and \(n = \text{vec}(N) \) the noise of size \(n^2 \times 1 \).
- The \(\text{vec} \) operator transforms a matrix \(A \) of size \(n \times p \) to a vector \(a \) of size \(np \times 1 \) by stacking the columns of \(A \).
- \(H \) is obtained from the PSF and is called the PSF matrix (or blur matrix). The matrix \(H \) is of high size \(n^2 \times n^2 \) and is ill-conditioned.
- If the image is of size \(512 \times 512 \), the matrix \(H \) is of size \(262144 \times 262144 \).

- In practice, the PSF is usually not available.
- Both the blur matrix and the restored image must be performed from the observed noisy blurred image: blind image restoration.
2. Estimation of the point spread function

- **Blind restoration**: We need to estimate the matrix P containing the image of the point spread function.
- The proposed method is based on the iterative deconvolution scheme introduced by Ayers and Dainty, 1977:
2. Estimation of the point spread function

\[\hat{F}_k = \text{FFT}(f_k) \]
\[\hat{H}_k = \text{FFT}(h_k) \]
\[F_{k+1} = \hat{F}_k + \Delta F_k \]
\[f_{k+1} = \text{IFFT}(F_{k+1}) \]
\[P = H_k \]
\[H_{k+1} = \hat{H}_k + \Delta H_k \]

Initial guests: \(f_k, h_k, k = 0 \)

Figure: Iterative PSF estimating algorithm
2. Estimation of the point spread function

Ayers & Dainty 1977

For \(k = 0, 1, 2, \ldots \),
\[
F_{k+1} = \hat{F}_k + \Delta F_k \quad \text{and} \quad H_{k+1} = \hat{H}_k + \Delta H_k
\]
with

\[
\Delta F_k = \frac{(G - \hat{F}_k \odot \hat{H}_k) \odot \hat{H}_k}{||\hat{H}_k||^2_F + \alpha^2}
\]

and

\[
\Delta H_k = \frac{(G - \hat{F}_k \odot \hat{H}_{k-1}) \odot \hat{H}_{k-1}}{||\hat{H}_{k-1}||^2_F + \alpha^2}
\]
2. Estimation of the point spread function

Constraints image

\[f_k(i, j) = \begin{cases}
 f_k(i, j) & \text{if } f_k(i, j) \in [0, 255], \\
 0 & \text{if } f_k(i, j) < 0, \\
 255 & \text{if } f_k(i, j) > 255.
\]

The blur constraints are the nonnegativity and the normalization of the PSF

\[\begin{cases}
 h_k(i, j) \geq 0, \\
 \sum_{i,j} h_k(i, j) = 1.
\]
3. Kronecker product approximation

Let $A = (a_{ij})$ and $B = (b_{ij})$ be $n \times p$ and $s \times q$ matrices respectively. The Kronecker product of the matrices A and B is defined as the $(ns) \times (pq)$ matrix

$$A \otimes B = (a_{ij}B).$$

Some properties of the Kronecker product are given below.

Lancaster & Rodman, 1995

\[
\begin{align*}
(A \otimes B)(C \otimes D) &= (AC) \otimes (BD) \\
(A \otimes B)^{-1} &= A^{-1} \otimes B^{-1}, \quad \text{if } A, B \text{ are nonsingular} \\
\text{vec}(AXB) &= (B^T \otimes A)\text{vec}(X) \\
(A \otimes B)^T &= A^T \otimes B^T.
\end{align*}
\]
3. Kronecker product approximation

- The PSF is usually assumed to be spatially invariant (Andrews (77), Jain (89)).
- Thus, the matrix H is separable and there exist two matrices H_1 and H_2 of size $n \times n$ such that

$$H = H_2 \otimes H_1.$$

- The Kronecker product approximation problem (KPA)

\[(\hat{H}_1, \hat{H}_2) = \arg \min_{H_1, H_2} \| H - H_2 \otimes H_1 \|_F. \] (5)

$\| . \|_F$ is the Frobenius norm, associated to the scalar product

$$\langle A, B \rangle_F = \text{tr}(A^T B)$$

where $\text{tr}(Z)$ denotes the trace of the square matrix Z and A and B are two matrices in $\mathbb{R}^{n \times p}$.
3. Kronecker product approximation

- For a given vector \(a = (a_1, \ldots, a_n)^T \in \mathbb{R}^n \),
 - The matrix \(\text{toep}(a, k) \) is an \(n \times n \) banded Toeplitz matrix whose \(k \)-th column is \(a = (a_1, \ldots, a_n)^T \).
 - The matrix \(\text{hank}(a, k) \) is an \(n \times n \) Hankel matrix with its first row and its last column defined by the vectors \((a_{k+1}, \ldots, a_n, 0, \ldots, 0) \) and \((0, \ldots, 0, a_1, \ldots, a_{k-1})^T \), respectively.
 - For \(a = (a_1, a_2, a_3, a_4, a_5) \), we have \(A_t = \text{toep}(a, 2) \) and \(A_h = \text{hank}(a, 3) \) with

\[
A_t = \begin{pmatrix}
 a_2 & a_1 & 0 & 0 & 0 \\
 a_3 & a_2 & a_1 & 0 & 0 \\
 a_4 & a_3 & a_2 & a_1 & 0 \\
 a_5 & a_4 & a_3 & a_2 & a_1 \\
 0 & a_5 & a_4 & a_3 & a_2
\end{pmatrix}, \quad
A_h = \begin{pmatrix}
 a_4 & a_5 & 0 & 0 & 0 \\
 a_5 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & a_1 \\
 0 & 0 & 0 & a_1 & a_2
\end{pmatrix}.
\]
3. Kronecker product approximation

- Let P be an $n \times n$ matrix containing the image of the point spread function.
- Suppose the center of the PSF (location of the point source) is at p_{ij}.
- Let R_n be the Cholesky factor of the $n \times n$ symmetric Toeplitz matrix $T_n = \text{Toeplitz}(v_n)$ with its first row $v_n = (n, 1, 0, 1, 0, \cdots)$.

ALGORITHM: KPA

1. Compute $R_n : T_n = R_n^T R_n$ (Cholesky decomposition)
2. Compute $P_r = R_n P R_n^T$
3. Compute the SVD: $P_r = \sum \sigma_k u_k v_k^T$
4. Construct the vectors: $\hat{a} = \sqrt{\sigma_1} R_n^{-1} v_1$ and $\hat{b} = \sqrt{\sigma_1} R_n^{-1} u_1$
5. Construct the matrices:
 - $\hat{A}_t = \text{toep}(\hat{a}, i)$, $\hat{A}_h = \text{hank}(\hat{a}, i)$,
 - $\hat{B}_t = \text{toep}(\hat{b}, j)$, $\hat{B}_h = \text{hank}(\hat{b}, j)$

It follows that $\hat{H}_1 = \hat{A}_t + \hat{A}_h$ and $\hat{H}_2 = \hat{B}_t + \hat{B}_h$ solve the following problem

$$(\hat{H}_1, \hat{H}_2) = \arg \min_{H_1, H_2} \| H - H_2 \otimes H_1 \|_F.$$
4. Tikhonov regularization

Consider the linear discrete ill-posed problem

$$\min_x \| Hx - g \|_2,$$

(6)

In order to diminish the effects of the noise in the data, we consider the Tikhonov regularization method. The method replaces the problem (6) by

$$\min_x (\| Hx - g \|_2^2 + \lambda^2 \| Lx \|_2^2),$$

(7)

where

- L is a regularization operator chosen to obtain a solution with desirable properties such as small norm or good smoothness.
- Optimal value of λ: regularization parameter.
 - L-curve criterion (Hansen, SIAM 92)
 - Generalized cross-validation (GCV) method (Golub & Wahba, SIAM 77).
4. Tikhonov regularization

The problem (13) is equivalent to following linear least squares problem

$$\hat{x} = \arg\min_x \left\| \begin{bmatrix} H \\ \lambda L \end{bmatrix} x - \begin{bmatrix} g \\ 0 \end{bmatrix} \right\|^2_2,$$ \hspace{1cm} (8)

The minimizer of the problem (8) is computed as the solution of the following linear system

$$H_\lambda \hat{x} = H^T g,$$ \hspace{1cm} (9)

where

$$H_\lambda = H^T H + \lambda^2 L^T L.$$
4. Tikhonov regularization

We assume that $H = H_2 \otimes H_1$ and $L = L_2 \otimes L_1$ where H_1, L_1, H_2, L_2 are square matrices of dimension $n \times n$. The problem (9) can be expressed as

$$[(H_2 \otimes H_1)^T (H_2 \otimes H_1) + \lambda^2 (L_2 \otimes L_1)^T (L_2 \otimes L_1)] \hat{X} = (H_2 \otimes H_1)^T g.$$

then

$$(H_1^T H_1) \hat{X} (H_2^T H_2) + \lambda^2 (L_1^T L_1) \hat{X} (L_2^T L_2) = H_1^T GH_2,$$ \quad (10)

where \hat{X} and G are the matrices such that $\text{vec}(\hat{X}) = \hat{x}$ and $\text{vec}(G) = g$. The linear matrix equation (10) is referred to as the generalized Sylvester matrix equation and is written in the following form

$$A \hat{X} D - \lambda^2 C \hat{X} B = E,$$ \quad (11)

where

$$A = H_1^T H_1, \quad B = L_2^T L_2, \quad C = -L_1^T L_1, \quad D = H_2^T H_2, \quad E = H_1^T GH_2.$$
5. The Global-GMRES method

The method is an iterative projection method onto matrix Krylov subspaces (Bouhamidi and Jbilou, JCAM 2005, AMC 2008).

Let
\[A_\lambda(X) = AXD - \lambda^2 CXB \]

and
\[E = H_1^T GH_2. \]

Let \(V \) be any \(n \times n \) matrix and consider the matrix Krylov subspace associated to the pair \((A_\lambda, V) \) and defined
\[K_k(A_\lambda, V) = \text{span}\{ V, A_\lambda(V), \ldots, A_{\lambda}^{k-1}(V) \}. \]

We note that \(A_\lambda^i(R_0) \) is defined recursively as
\[A_\lambda^i(R_0) = A_\lambda(A_\lambda^{i-1}(R_0)). \]

Remark that the matrix Krylov subspace \(K_k(A_\lambda, V) \) is a subspace of \(\mathbb{R}^{n \times n} \).
5. The Global-GMRES method

The modified global Arnoldi algorithm constructs an F-orthonormal basis \(V_1, V_2, \ldots, V_k \) of the matrix Krylov subspace \(\mathcal{K}_k(A, V) \), i.e.

\[
\langle V_i, V_j \rangle_F = \delta_{i,j}, \quad \text{for} \quad i, j = 1, \ldots, k,
\]

ALGORITHM 1: The modified Global Arnoldi algorithm

1. Set \(V_1 = V / \| V \|_F \).
2. For \(j = 1, \ldots, k \) do

 \(\tilde{V} = A_\lambda (V_j), \)

 for \(i = 1, \ldots, j \) do

 \[h_{i,j} = \langle V_i, \tilde{V} \rangle_F, \]

 \(\tilde{V} = \tilde{V} - h_{i,j} V_i, \)

 endfor

 \[h_{j+1,j} = \| \tilde{V} \|_F, \]

 \(V_{j+1} = \tilde{V} / h_{j+1,j}. \)

 EndFor.
5. The Global-GMRES method

The restarted Global GMRES algorithm for solving the linear matrix equation (11) is summarized as follows

<table>
<thead>
<tr>
<th>GL-GMRES algorithm for the linear matrix equation (11)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Choose X_0 a tolerance ε and set $iter = 0$. Compute: $R_0 = C - A_\lambda(X_0)$, $\beta = |R_0|_F$, and $V_1 = R_0/\beta$.</td>
</tr>
<tr>
<td>2. Construct the F-orthonormal basis V_1, V_2, \ldots, V_k by Algorithm 1.</td>
</tr>
<tr>
<td>3. Determine y_k as solution of the least square problem: $\min_{y \in \mathbb{R}^k} |R_0 e_1 - \tilde{H}_k y|_2$</td>
</tr>
<tr>
<td>Compute: $X_k = X_0 + V_k(y_k \otimes I_p)$</td>
</tr>
<tr>
<td>4. Compute the residual R_k and $|R_k|_F$.</td>
</tr>
<tr>
<td>5. If $|R_k|_F < \varepsilon$ Stop; else $X_0 = X_k, R_0 = R_k, \beta = |R_0|_F, V_1 = R_0/\beta, iter = iter + 1$, Goto 2.</td>
</tr>
</tbody>
</table>

\tilde{H}_k denotes the $(k + 1) \times k$ upper Hessenberg matrix whose nonzero entries $h_{i,j}$ are defined by Algorithm 1.
Generalized cross-validation (GCV) method (Golub & Wahba, SIAM 77). The regularization parameter is chosen to minimize the GCV function

\[
\text{GCV}(\lambda) = \frac{\|H\hat{x}_\lambda - g\|_2^2}{\left[\text{tr}(I - HH_\lambda^{-1}H^T)\right]^2} = \frac{\|(I - HH_\lambda^{-1}H^T)g\|_2^2}{\left[\text{tr}(I - HH_\lambda^{-1}H^T)\right]^2}
\]

where \(H_\lambda = H^TH + \lambda^2L^TL \).

We have \(H = H_2 \otimes H_1 \) and \(L = L_2 \otimes L_1 \) where \(H_1, H_2L_1, L_2 \) are of size \(n \times n \).
6. The GCV method for Tikhonov regularization

Consider the Generalized Singular Value Decompositions (GSVD) (Golub & VanLoan) of the pairs \((H_1, L_1)\) and \((H_2, L_2)\). Thus, there exist orthonormal matrices \(U_1, U_2, V_1, V_2\) and invertible matrices \(X_1, X_2\) such that

\[
U_1^T H_1 X_1 = C_1 = \text{diag}(c_{1,1}, \ldots, c_{n,1}), \quad c_{i,1} \geq 0,
\]
\[
U_2^T H_2 X_2 = C_2 = \text{diag}(c_{1,2}, \ldots, c_{p,2}), \quad c_{i,2} \geq 0,
\]

\[
V_1^T L_1 X_1 = S_1 = \text{diag}(s_{1,1}, \ldots, s_{n,1}), \quad s_{i,1} \geq 0,
\]
\[
V_2^T L_2 X_2 = S_2 = \text{diag}(s_{1,2}, \ldots, s_{p,2}), \quad s_{i,2} \geq 0.
\]

and

\[
C_1^T C_1 + S_1^T S_1 = I_n, \quad C_2^T C_2 + S_2^T S_2 = I_n.
\]

Then the GSVD of the pair \((H, L)\) is given by

\[
U^T HX = C = \text{diag}(c_1, \ldots, c_{n^2}), \quad c_i \geq 0,
\]
\[
V^T LX = S = \text{diag}(s_1, \ldots, s_{n^2}), \quad s_i \geq 0,
\]

where \(U = U_2 \otimes U_1, V = V_2 \otimes V_1, C = C_2 \otimes C_1, S = S_2 \otimes S_1\) and \(X = X_2 \otimes X_1\).
Therefore, one can show that the expression of the GCV function is given by

\[
GCV(\lambda) = \frac{\sum_{i=1}^{n^2} \left(\frac{s_i^2 \tilde{g}_i}{c_i^2 + \lambda^2 s_i^2} \right)^2}{\left(\sum_{i=1}^{n^2} \frac{s_i^2}{c_i^2 + \lambda^2 s_i^2} \right)^2},
\]

where \(\tilde{g} = U^T g \).
7. Convex optimization problem

We consider the convex optimization problem

\[
\min_{x \in \tilde{\Omega}} (\|Hx - g\|_2^2 + \lambda^2 \|Lx\|_2^2),
\]

where The set \(\tilde{\Omega} \subset \mathbb{R}^{n^2} \) could be a simple convex set (e.g., a sphere or a box) or the intersection of some simple convex sets. Then

\[
\min_{x \in \Omega} (\|(H_2 \otimes H_1)x - g\|_2^2 + \lambda^2 \|(L_2 \otimes L_1)x\|_2^2),
\]

Using some Kronecker properties, the problem (14) can be reformulated as

\[
\min_{x \in \Omega} (\|H_1 X H_2^T - G\|_F^2 + \lambda^2 \|L_1 X L_2^T\|_F^2),
\]

where the set \(\Omega \) is such that

\[
x = \text{vec}(X) \in \tilde{\Omega} \subset \mathbb{R}^{n^2} \iff X \in \Omega \subset \mathbb{R}^{n \times n}.
\]
7. Convex optimization problem

\[f_\lambda : \mathbb{R}^{n \times n} \rightarrow \mathbb{R} \]
\[X \rightarrow \| H_1 X H_2^T - G \|_F^2 + \lambda^2 \| L_1 X L_2^T \|_F^2. \]

The convex constrained minimization problem is

\[
\text{Minimize } f_\lambda(X) \quad \text{subject to } \quad X \in \Omega. \tag{16}
\]

Specific cases that will be considered are

\[
\Omega_1 = \{ X \in \mathbb{R}^{n \times n} : L \leq X \leq U \} \tag{17}
\]

and

\[
\Omega_2 = \{ X \in \mathbb{R}^{n \times n} : \| X \|_F \leq \delta \}. \tag{18}
\]

Here, \(Y \leq Z \) means \(Y_{ij} \leq Z_{ij} \) for all possible entries \(ij \), \(L \) and \(U \) are given matrices and \(\delta > 0 \) is a given scalar. Another option to be considered is \(\Omega = \Omega_1 \cap \Omega_2 \).

The function \(f_\lambda : \mathbb{R}^{n \times n} \rightarrow \mathbb{R} \) is differentiable and its gradient is given by

\[
\nabla f_\lambda(X) = 2 \left(H_1^T (A(X) - G) H_2 + \lambda^2 L_1^T L(X) L_2 \right),
\]
\[
= 2 \left(H_1^T (H_1 X H_2^T - G) H_2 + \lambda^2 L_1^T L_1 X L_2^T L_2 \right).
\]
7. Convex optimization problem

Let

\[
[X_k]_{ij} = \begin{cases}
L_{ij} & \text{if } [\nabla f_\lambda(X_k)]_{ij} \geq 0, \\
U_{ij} & \text{if } [\nabla f_\lambda(X_k)]_{ij} < 0,
\end{cases}
\]

and

\[
\alpha_k = -\frac{\langle \mathcal{A}(X_k) - G| \mathcal{A}(H_k) \rangle_F + \lambda^2 \langle \mathcal{L}(X_k)| \mathcal{L}(H_k) \rangle_F}{\| \mathcal{A}(H_k) \|^2_F + \lambda^2 \| \mathcal{L}(H_k) \|^2_F}.
\]
7. Convex optimization problem

Algorithm 2: The Conditional Gradient-Tikhonov Algorithm

1. Choose a tolerance tol, an initial guess $X_0 \in \Omega$, an integer k_{max} and set $k = 0$.
2. Determine λ as the parameter minimizing the GCV function $G(\lambda)$ given by equation (12).
3. While $k < k_{\text{max}}$

 3.1- Compute the matrix \overline{X}_k by using (19),

 3.2- Compute the value: $\eta_k = \langle \nabla f_\lambda(X_k) | \overline{X}_k - X_k \rangle_F$

 3.3- If $|\eta_k| < tol$ Stop else continue,

 3.4- Compute α_k by using (20),

 3.5- If $\alpha_k > 1$ then $\alpha^*_k = 1$,

 ElseIf $\alpha_k < 0$ then $\alpha^*_k = 0$,

 Else $\alpha^*_k = \alpha_k$,

 EndIF.

 3.6- Update $X_{k+1} = X_k + \alpha^*_k(\overline{X}_k - X_k)$,

 3.7- Set $k = k + 1$,

EndWhile.
7. Convex optimization problem

Theorem

The sequence \(\{X_k\} \) generated by the Algorithm 2 is a minimizing sequence, i.e.,

\[
\lim_{k \to \infty} f_\lambda(X_k) = \min_{X \in \Omega} f_\lambda(X).
\]
8. Numerical examples

The PSNR is the Peak Signal-to-Noise Ratio (PSNR) and it measures the distortion between the original image I_0 and another image I_r (restored image) and is defined by

$$PSNR(I_0, I_r) = 10 \log_{10}\left(\frac{n^2d^2}{\|I_0 - I_r\|^2_F}\right),$$

where $d = 255$ in the case of gray images and $n \times n$ is the size of the images.
8. Numerical examples: Tikhonov-Sylvester method

The original image is the cameraman image from Matlab

The blurring matrix H is given by $H = H_2 \otimes H_1 \in \mathbb{R}^{256^2 \times 256^2}$, where $H_1 = H_2 = [h_{ij}]$ and $[h_{ij}]$ is the Toeplitz matrix of dimension 256×256 given by

$$h_{ij} = \begin{cases} \frac{1}{2r-1}, & |i - j| \leq r, \\ 0, & \text{otherwise.} \end{cases}$$

Figure: Original image (left), degraded image (right).
8. Numerical examples: Tikhonov-Sylvester method

Figure: Degraded image (left) and restored image (right).
8. Numerical examples: Conditional gradient Tikhonov method

Figure: Original image

The original 500 × 500 "cat" image was degraded by a 'speckle' multiplicative noise with different values of the variance σ_m plus an additive white gaussian noise with zero mean and different values of the variance σ_a.
8. Numerical examples: Conditional gradient Tikhonov method

Figure: Left: degraded image with $PSNR = 16.02\, dB$, $\sigma_m = 0.1$ and $\sigma_a = 0.001$, right: degraded image with $PSNR = 13.88\, dB$, $\sigma_m = 0.25$ and $\sigma_a = 0.001$
8. Numerical examples: Conditional gradient Tikhonov method

Figure: Left: Restored image by `deconvlucy` of Matlab with $PSNR = 14.27\, dB$, right: Restored image by our method $PSNR = 23.53\, dB$ with $\sigma_m = 0.1$ and $\sigma_a = 0.001$
8. Numerical examples: Conditional gradient Tikhonov method

Figure: Left: Restored image by deconvlucy of Matlab with $PSNR = 12.65\, dB$, right: Restored image by our method $PSNR = 20.69\, dB$ with $\sigma_m = 0.25$ and $\sigma_a = 0.001$
8. Numerical examples: Conditional gradient Tikhonov method

<table>
<thead>
<tr>
<th>σ_m</th>
<th>σ_a</th>
<th>Degraded image</th>
<th>deconvlucy</th>
<th>CGT method</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.001</td>
<td>16.02</td>
<td>14.27</td>
<td>23.53</td>
</tr>
<tr>
<td>0.25</td>
<td>0.001</td>
<td>13.88</td>
<td>12.65</td>
<td>20.69</td>
</tr>
<tr>
<td>0.50</td>
<td>0.001</td>
<td>11.83</td>
<td>10.13</td>
<td>18.99</td>
</tr>
<tr>
<td>0.001</td>
<td>0.1</td>
<td>14.54</td>
<td>13.22</td>
<td>18.36</td>
</tr>
<tr>
<td>0.001</td>
<td>0.25</td>
<td>12.00</td>
<td>09.66</td>
<td>15.03</td>
</tr>
</tbody>
</table>

Table: PSNR for different values of the variance of the multiplicative and the additive noises
9. References

