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Introducing ULCO & LISIC (1)
Université du Littoral Côte d’Opale (ULCO)

http://www.univ-littoral.fr/

“Proximity” University born in 1993
4 sites (' 40 km between Calais and the other sites):

Boulogne (fishing industry)
Calais (chemistry, ferry port, shuttle)
Dunkerque (industry port—metallurgy, petrol, etc—and
energy—nuclear plants)
Saint-Omer (marshes used for agriculture,
industry—crystal, paper, cardboard)

Research activities with applications in environment (air,
ground, water) and seas
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Introducing ULCO & LISIC (2)
Laboratoire d’Informatique, Signal, Image de la Côte d’Opale (LISIC)

. .

Created in Calais in 2010 (fusion of 2 ULCO labs) with currently: 40
permanent faculty members, 16 Ph.D. students, 4 post-docs
Four research teams with theoretical computer science and signal
processing researchers:

1 IMAP (Images and Learning)
2 OSMOSE (Evolutionnary modelization, optimization, simulation)
3 MODEL (Multi-Modelisation et Software Evolution)
4 SPeciFI (Peception systems and Information Fusion)

Several research projects in collaboration with industry (ArcelorMittal,
Innocold, etc), research institutes (CNRS, IFREMER, etc) or public
institutions (DREAL, Région Hauts-de-France, etc)
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The OSCAR project

Funded by the Région Hauts-de-France within the
“Chercheurs-citoyens" program (2015–2017)
Consortium with associations (ATMO HdF, BES) and research
institutions (LISIC & Spirals [Inria,U. Lille, CNRS, IUF])
Goal: provide fine-grained yet accurate air quality maps by combining
precise measurements from ATMO with mobile sensor readings
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The OSCAR project

Issues:
1 Designing a low-cost sensing device and launching a mass production

involving (high school) students;
2 Sending data from the devices to a server using smartphones within the

APISENSE mobile-crowdsensing platform
3 Performing sensor calibration from the sensor readings and ATMO

measurements
4 Deriving precise air quality maps
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The OSCAR project

Internet of Thing (IoT)
“One of the myths about the IoT is that companies have all the data they
need, but their real challenge is making sense of it. In reality, [...] the
quality of the data isn’t always good enough, and it remains difficult to
integrate multiple data sources.” – Chris Murphy
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Our publications within OSCAR
One ongoing Ph.D. thesis (Clément Dorffer, since Nov. 2014)
Publications (+ communications):

C. Dorffer, M. Puigt, G. Delmaire, G. Roussel, Blind calibration of mobile
sensors using informed nonnegative matrix factorization, Proc. of LVA/ICA,
vol. LNCS 9237, pp. 497-505, 2015.

C. Dorffer, M. Puigt, G. Delmaire, G. Roussel, Blind mobile sensor calibration
using an informed nonnegative matrix factorization with a relaxed rendezvous
model, Proc. of ICASSP, pp. 2941-2945, 2016.

C. Dorffer, M. Puigt, G. Delmaire, G. Roussel, Nonlinear mobile sensor
calibration using informed semi-nonnegative matrix factorization with a
Vandermonde factor, Proc. of SAM, 2016.

C. Dorffer, M. Puigt, G. Delmaire, G. Roussel, Fast nonnegative matrix
factorization and completion using Nesterov iterations, Proc. of LVA/ICA, vol.
LNCS 10179, pp. 26–35, 2017.

C. Dorffer, M. Puigt, G. Delmaire, G. Roussel, Outlier-robust calibration
method for sensor network, submitted to ECMSM

C. Dorffer, M. Puigt, G. Delmaire, G. Roussel, Informed nonnegative matrix
factorization methods for mobile sensor network calibration, in preparation
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Problem statement
Let’s talk about sensors

Sensed phenomenon =⇒ voltage
Voltage =⇒ phenomenon?

Sensor calibration needed
Not always physically possible

î Blind sensor calibration

Mobile sensors (rendezvous)

Averaging-based calibration (Lee et al., 2014)
Calibration using a reference (multi-hop calibration, Saukh et al., 2015)

î Blind mobile sensor calibration without multi-hops?
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Definitions

A rendezvous is a temporal and spatial vicinity between two sensors
(Saukh et al., 2013).
A scene S is a discretized area observed during a time interval
[t, t+∆t). A spatial pixel has a size lower than ∆d, where ∆t and ∆d
define the vicinity of the rendezvous.

Sensor 1

Sensor 2

Sensor 3

Rendezvous

Scene S

stacking

Column

Observed matrix X

Sensors

Spatial
samples
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Assumptions (1)
Sensor response (calibration function F (.) of Sensor j)

x(i, j)︸ ︷︷ ︸
sensor-output voltage

' Fj(y(i))

' (y(i)︸︷︷︸
physical phenomenom

·

unknown gain and offset︷ ︸︸ ︷
αj) + βj

î Matrix form (if each of the m sensor senses all the scene) x(1,1) · · · x(1,m)
...

...
x(n,1) · · · x(n,m)


︸ ︷︷ ︸

X

'

 y(1) 1
...

...
y(n) 1


︸ ︷︷ ︸

G

·
[

α1 α2 · · · αm
β1 β2 · · · βm

]
︸ ︷︷ ︸

F

In practice, irregular sampling: W ◦X with

W(i, j),
{

0 if x(i, j) is not available,
ρj otherwise,

where ρj is a weight coefficient associated with Sensor j
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Assumptions (2)
X, G, and F are nonnegative (air quality application)
A known reference

î ∀i = 1, . . . ,n, x(i,m) = y(i) (i.e., αm = 1, βm = 0)
î Blind calibration revisited as a weighted nonnegative matrix

factorization problem

W ◦

 x(1,1) · · · x(1,m−1) y(1)
...

...
...

x(n,1) · · · x(n,m−1) y(n)


︸ ︷︷ ︸

X

'W ◦


 y(1) 1

...
...

y(n) 1


︸ ︷︷ ︸

G

·
[

α1 α2 · · · αm−1 1
β1 β2 · · · βm−1 0

]
︸ ︷︷ ︸

F


Considered blind calibration problem
Estimating

min
G≥0,F≥0

‖W ◦ (X−G ·F)‖2
f

Assumptions to perform the blind calibration
Sensor network must be dense enough to guarantee enough rendezvous
and X must be well-conditioned and with “enough” diversity on W ◦X
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Proposed informed NMF method (1)
Parameterization

Recent informed NMF methods with known entries:
penalization term (Choo et al., 2015)
specific parameterization (Limem et al., 2014)

We generalize the parameterization in (Limem et al., 2014):
Example (n = 4,m = 3, k = 2 calibrated measurements)

W ◦


x(1,1) x(1,2) y(1)
x(2,1) x(2,2) y(2)
x(3,1) x(3,2) y(3)
x(4,1) x(4,2) y(4)

'W ◦




y(1) 1
y(2) 1
y(3) 1
y(4) 1

 ·[ α1 α2 1
β1 β2 0

]
Parameterization: separate set and free parts in G and F

G =


0 1
1 1
1 1
0 1


︸ ︷︷ ︸

ΩG

◦


0 1

y(2) 1
y(3) 1

0 1


︸ ︷︷ ︸

ΦG

+


1 0
0 0
0 0
1 0


︸ ︷︷ ︸

Ω̄G

◦


y(1) 0

0 0
0 0

y(4) 0


︸ ︷︷ ︸

∆G

= ΩG ◦ΦG︸ ︷︷ ︸
set

+Ω̄G ◦∆G︸ ︷︷ ︸
free

Similarly, F = ΩF ◦ΦF + Ω̄F ◦∆F
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Proposed informed NMF method (2)
Update rules

Informed NMF subproblems:
1 F = argmin

F̃
||W ◦

(
X−G · F̃

)
||2f s.t. F̃ ≥ 0, F̃ = ΦF +∆F

2 G = argmin
G̃
||W ◦

(
X− G̃ ·F

)
||2f s.t. G̃≥ 0, G̃ = ΦG +∆G

Proposed method using multiplicative updates (Lee & Seung, 1999)
Using an MM strategy, we derive

Update rules:

Fk+1 = ΦF +∆Fk ◦ Ω̄F ◦
[

GT
k (W

◦2 ◦ (X−Gk ·ΦF)
+)

GT
k (W

◦2 ◦ (Gk ·∆Fk))

]
Gk+1 = ΦG +∆Gk ◦ Ω̄G ◦

[
(W◦2 ◦ (X−ΦG ·Fk+1)

+)FT
k+1

(W◦2 ◦ (∆Gk ·Fk+1))FT
k+1

]
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Proposed informed NMF method (3)
Initialization

Initialization is known to be tricky
Classical strategies: random, expert’s one (Limem et al., 2014) or
output of another approach (Benachir et al., 2013)
We take into account the low-rank structure of X to initialize G and F

W ◦

 x(1,1) · · · x(1,m−1) y(1)
...

...
...

x(n,1) · · · x(n,m−1) y(n)


︸ ︷︷ ︸

X

'W ◦


 y(1) 1

...
...

y(n) 1


︸ ︷︷ ︸

G

·
[

α1 α2 · · · αm−1 1
β1 β2 · · · βm−1 0

]
︸ ︷︷ ︸

F



1 We apply matrix completion (Becker et al., 2011) to W ◦X and obtain X̃
(also possible through weighted NMF)

2 We replace the missing entries in the first column of G by those of the last
of X̃

3 We estimate F from X̃ and G using nonnegative least-squares
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ADding more information into NMF

We aim to relax the above constraints on the proposed calibration
methods
Two extensions which might be applied together (or not!) to inform the
estimation of G or F, respectively

1 Adding sparse priors
2 Adding average calibration parameters
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A new informed NMF approach
Adding sparse priors to inform NMF

What if the sensor network is not dense enough?

W ◦X =


x1,1 − −
− − y2
− − y3
− xn,2 −



Sparse decomposition of the scene, i.e., y≈ ỹ = D ·a with D ∈ Rn,l

known dictionary, a sparse vector of contributions
⇒ Global optimization problem

Ĝ, F̂ = argmin
G,F
||W ◦ (X−G ·F)||2f

s.t. G,F ≥ 0
G = ΩG ◦ΦG + Ω̄G ◦∆G
F = ΩF ◦ΦF + Ω̄F ◦∆F
∃a ∈ Rl s.t. g1 ≈D ·a
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Structure of informed NMF with sparse priors

min
G,F,a
||W ◦ (X−G ·F)||2f +λ · ||g1−D ·a||2f +µ · ||a||21

s.t.

 G,F ≥ 0
G = ΩG ◦ΦG + Ω̄G ◦∆G
F = ΩF ◦ΦF + Ω̄F ◦∆F

Non-convex problem w.r.t all variables
î Alternating strategy

1 Updating F (as before)
2 Updating G
3 Estimating a
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Structure of informed NMF with sparse priors

Updating G

G = argmin
G̃≥0

∣∣∣∣W ◦ (X− G̃ ·F)
∣∣∣∣2

f +λ · ||g1−D ·a||2f

s.t. G̃ = ΩG ◦ΦG + Ω̄G ◦∆G

Defining

X = [X,D ·a] W =
[
W,
√

λ ·1x×1

]
F =

[
F,
(

1
0

)]
,

Updating G as previously (except that X, W and F are replaced by X,
W and F)
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Structure of informed NMF with sparse priors

Estimating a

â = argmin
a

λ · ||g1−D ·a||2f +µ · ||a||21

î Best sparse decomposition of g1

Solved using the Orthogonal Matching Pursuit (OMP) greedy algorithm
Iteratively selecting the best atom in D ,
Defining the orthogonal projection on the selected atom,
Projecting the residual,
Repeating until a given number of atoms or a given residual error.
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Sensor manufacturer information to inform F

Calibration parameters are
distributed around known
values
Typical manufacturer data

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
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e
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)
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î Sum constraint on αj and βj

! Sum constraints are classical
in hyperspectral unmixing
(e.g., Heinz, 2001)
chemical source
apportionment (see, e.g.,
Chreiky et al., 2015)

Here, they are approximately
satisfied

î Defining f̄ ,= [f̄1, f̄2]T

if m→+∞ then
1

m−1 ·F ·
[

1m−1×1
0

]
→ f̄

or equivalently
1
m ·
(
Ω̄F ◦ΦF

)
·1m,1→ f̄
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New cost function

New penalization term in the optimization of F

min
G,F
||W ◦ (X−G ·F)||2f + γ

∣∣∣∣∣∣∣∣ 1
m
·
(
Ω̄F ◦ΦF

)
·1m,1− f̄

∣∣∣∣∣∣∣∣2
f

s.t.

 G,F ≥ 0
G = ΩG ◦ΦG + Ω̄G ◦∆G
F = ΩF ◦ΦF + Ω̄F ◦∆F

Using the heuristic MU, we derive the update rule

F← Ω̄F ·ΦF +ΩF∆F ◦
Ω̄F◦(GT(W2◦(X−G·∆F))+ γ

m ·diag(f̄ )·Ω̄F

Ω̄F◦(GT(W2◦(G·(Ω̄F◦∆F))))+ γ

m(m−1) ·diag(Ω̄F◦∆F ·1m,1)·Ω̄F
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The big picture

Blind sensor calibartion ≈ matrix factorization with missing entries and

Structure on G:


y(1) 1
y(2) 1
y(3) 1
y(4) 1


Structure on F:

[
α1 α2 1
β1 β2 0

]
î Informed matrix factorization with specific parameterization

1 F = argmin
F̃
||W ◦

(
X−G · F̃

)
||2f s.t. F̃ ≥ 0, F̃ = ΦF +∆F

2 G = argmin
G̃
||W ◦

(
X− G̃ ·F

)
||2f s.t. G̃≥ 0, G̃ = ΦG +∆G

+ Information on G (sparse priors)
G = argmin

G̃≥0

∣∣∣∣W ◦ (X− G̃ ·F)
∣∣∣∣2

f +λ · ||g1−D ·a||2f s.t. G̃ = ΦG +∆G

& Information on F (known average calibration parameter values)
F = argmin

F̃≥0

∣∣∣∣W ◦ (X−G · F̃)
∣∣∣∣2

f + γ
∣∣∣∣ 1

m ·
(
Ω̄F ◦ΦF

)
·1m,1− f̄

∣∣∣∣2
f s.t. F̃ = ΦF +∆F
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Simulation of a scene

Crowdsensing-like particulate matter sensing
Compact Optical Dust Sensor (Sharp GP2Y1010AU0F)
Scene = 10×10 discretized area (n = 100) observed by m = 26 sensors
The values in y range between 0 and 0.5 mg/m3 (no sensor saturation)
Dictionary with 62 atoms
y is 2-sparse
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Sensors and observations

No missing samples
(l = 2500)

Calibration parameters randomly
chosen according to truncated
Gaussian distribution,
∀j = 1, . . . ,m−1:

αj centered around 5 V/(mg/m3)
(variance 5e-2) with 3.5 < αj < 6.5
βj centered around 0.9 V (variance
6e-2) with 0 < βj < 1.5

î X is a 26×100 matrix for which we
randomly keep k+ l samples (with
k� l)

k = 4 high-quality & calibrated
measurements in the m-th column
of X
Non-null entries of W are set to
ρj = 1, ∀j = 1, . . . ,m−1 and ρm = l.

+ Gaussian noise realizations (input
SNR varying from 11 dB to 100 dB)
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Sensors and observations

25% missing samples
(l = 1875)

Calibration parameters randomly
chosen according to truncated
Gaussian distribution,
∀j = 1, . . . ,m−1:

αj centered around 5 V/(mg/m3)
(variance 5e-2) with 3.5 < αj < 6.5
βj centered around 0.9 V (variance
6e-2) with 0 < βj < 1.5

î X is a 26×100 matrix for which we
randomly keep k+ l samples (with
k� l)

k = 4 high-quality & calibrated
measurements in the m-th column
of X
Non-null entries of W are set to
ρj = 1, ∀j = 1, . . . ,m−1 and ρm = l.

+ Gaussian noise realizations (input
SNR varying from 11 dB to 100 dB)
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Sensors and observations

75% missing samples
(l = 625)

Calibration parameters randomly
chosen according to truncated
Gaussian distribution,
∀j = 1, . . . ,m−1:

αj centered around 5 V/(mg/m3)
(variance 5e-2) with 3.5 < αj < 6.5
βj centered around 0.9 V (variance
6e-2) with 0 < βj < 1.5

î X is a 26×100 matrix for which we
randomly keep k+ l samples (with
k� l)

k = 4 high-quality & calibrated
measurements in the m-th column
of X
Non-null entries of W are set to
ρj = 1, ∀j = 1, . . . ,m−1 and ρm = l.

+ Gaussian noise realizations (input
SNR varying from 11 dB to 100 dB)
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Sensors and observations

95% missing samples
(l = 125)

Calibration parameters randomly
chosen according to truncated
Gaussian distribution,
∀j = 1, . . . ,m−1:

αj centered around 5 V/(mg/m3)
(variance 5e-2) with 3.5 < αj < 6.5
βj centered around 0.9 V (variance
6e-2) with 0 < βj < 1.5

î X is a 26×100 matrix for which we
randomly keep k+ l samples (with
k� l)

k = 4 high-quality & calibrated
measurements in the m-th column
of X
Non-null entries of W are set to
ρj = 1, ∀j = 1, . . . ,m−1 and ρm = l.

+ Gaussian noise realizations (input
SNR varying from 11 dB to 100 dB)
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Interest of the parameterization

We aim to test the influence of:
1 the proportion of uncalibrated sensors to have rendezvous with calibrated

ones (default 20%),
2 the proportion of missing entries in X (default 90%)
3 the input SNR (default noiseless)

For each test condition, we launch 25 random runs with 2e6 iterations
Perf. criterion: Root Mean Square Error (RMSE) over rows of F

Comparison with a “naive” informed NMF method (classical NMF
followed by a projection step to replace the known entries by their
actual values) in pink vs proposed method in blue
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Performance achieved by all the methods

Slightly different initialization of the methods:
1 Random initialization of F around theoretical values of f̄
2 NMF/C used for completion

We aim to test the influence of:
1 the proportion of uncalibrated sensors to have rendezvous with calibrated

ones (default 30%),
2 the proportion of missing entries in X (default 90%)
3 the input SNR (default noiseless)

For each test condition, we launch 25 random runs with 5e5 iterations
Perf. criterion: RMSE over rows of F
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NMF/C Informed NMF INMF+ sparse priors INMF+ average
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Comparison with state-of-the-art method
Saukh et al. proposed a multi-hop calibration technique

1 Perform regression between readings of calibrated and uncalibrated
sensors in rendezvous

2 Estimate the calibration parameters of the uncalibrated sensor
3 Use it as a new calibrated reference and go back to step 1.

The multi-hop approach does not work on the previous tests (conditions
not satisfied)
We perform new simulations with more rendezvous to see how the
approaches perform

We randomly remove a proportion of missing entries in X (much more
calibrated data than in the previous tests)
Perf criterion: RMSE, success rate (RMSE below 1e-10) in noiseless and
noisy cases (SNR ≈ 30 dB)
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Physical field estimation

So far, we focused on the estimation of F

G provides an estimation of the sensed physical field
Let us see an example

x coordinate
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100 × 100 scene
Sensed by 50 sensors
k = 10 calibrated sensor
readings
98% of missing data
No rendezvous between
uncalibrated and calibrated
sensors
100 atoms in the dictionnary
(Gaussian-like atoms)
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Reconstruction accuracy

Theoretical scene
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Reconstruction accuracy
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Reconstruction accuracy
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Conclusion and future work

Conclusion
Blind mobile sensor calibration revisited as informed matrix
factorization

specific constraints due to the problem (parameterization, sparse priors,
known average calibration parameters)

Proposed approaches robust to the number of missing entries and of
rendezvous (no spatial discretization is required with the sparse
approximation)
well-conditioned X restrictive and diversity in W ◦X?

More likely to be satisfied in a multiple-scene configuration

We also proposed approaches for
nonlinear calibration models (SAM’16)
fast factorization using Nesterov iterations (LVA-ICA’17)
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Conclusion and future work

Future work
Replacing the dictionnary by a geostatistical physical model
Case of sensors whose readings also depend on humidity and
temperature
Blind calibration through privacy-preserving crowdsensing?

Thank you for your attention !

M. Puigt Informed NMF for Mobile Sensor Calibration March 3, 2017 34


	Problem statement, definitions and assumptions
	Problem statement
	Definitions
	Assumptions

	Blind calibration as an NMF problem
	Parameterization
	Update rules
	Initialization

	Adding more information into NMF
	Sparse assumptions to inform G
	Sensor manufacturer information to inform F

	The big picture
	Experimental validation
	Simulation of a scene
	Interest of the parameterization
	Performance achieved by all the methods on similar tests
	Comparison with state-of-the-art methods
	Physical field estimation

	Conclusion and future work

