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Foreword: matrix factorization

Many problems in machine learning and in signal/image processing can be
rewritten as a system of equations X ≈ A · S :

X A S

≈ ·
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Foreword: matrix factorization

Many problems in machine learning and in signal/image processing can be
rewritten as a system of equations X ≈ A · S :

X A S

≈ ·

source localization/separation
X observed data matrix, A mixing matrix, S source matrix

If A estimated (and sensor array geometry is known)

î mixture estimation (source localization)

If S estimated (or if sensor array geometry is known)

î source separation (or beamforming)
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Foreword: matrix factorization

Many problems in machine learning and in signal/image processing can be
rewritten as a system of equations X ≈ A · S :

X A S

≈ ·

Low-rank matrix approximation
X noisy matrix (possibly with missing entries), A weight matrix, S latent
variable matrix

Topic modeling (e.g., online news)

Collaborative filtering (e.g., Netflix Prize)

Graph analysis (after a transformation into a matrix – e.g., bike sharing
system)
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NMF: why is it so popular?

In many problems, matrices X ≈ A · S are non-negative
chemical source separation
hyperspectral imagery
mobile sensor calibration

î Non-negativity on A and/or S yields better interpretability

NMF applied to face dataset (source: Lee & Seung, 1999)

M. Puigt Accelerating Weighted (N)MF with Random Projections FoRM ]4 4



NMF: why is it so popular?

In many problems, matrices X ≈ A · S are non-negative
chemical source separation
hyperspectral imagery
mobile sensor calibration

î Non-negativity on A and/or S yields better interpretability

Principal Component Analysis applied to face dataset (source: Lee & Seung, 1999)
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Application (motivation) – 1
Mobile sensor calibration (Dorffer et al., 2015–2018)

Sensed phenomenon =⇒ voltage
Voltage =⇒ phenomenon?

Sensor calibration needed
Not always physically possible

î Blind sensor calibration

M. Puigt Accelerating Weighted (N)MF with Random Projections FoRM ]4 5



Application (motivation) – 1
Mobile sensor calibration (Dorffer et al., 2015–2018)

Sensed phenomenon =⇒ voltage
Voltage =⇒ phenomenon?

Sensor calibration needed
Not always physically possible

î Blind sensor calibration

M. Puigt Accelerating Weighted (N)MF with Random Projections FoRM ]4 5



Application (motivation) – 2
Definitions

A rendezvous is a temporal and spatial vicinity between two sensors
(Saukh et al., 2013).

A scene S is a discretized area observed during a time interval
[t , t + ∆t). A spatial pixel has a size lower than ∆d , where ∆t and ∆d
define the vicinity of the rendezvous.

Sensor 1

Sensor 2

Sensor 3

Rendezvous

Scene S

stacking

Column

Observed matrix X

Sensors

Spatial
samples
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Application (motivation) – 3
Factorization

Blind calibration revisited as a weighted NMF problem (affine model)

W ◦

 x(1, 1) · · · x(1,m − 1) y(1)
...

...
...

x(n, 1) · · · x(n,m − 1) y(n)


︸ ︷︷ ︸

X

' W ◦


 y(1) 1

...
...

y(n) 1


︸ ︷︷ ︸

A

·
[
α1 α2 · · · αm−1 1
β1 β2 · · · βm−1 0

]
︸ ︷︷ ︸

S


where

w(i, j) =

{
0 if x(i, j) not available
ρj otherwise

î Solution based on specific problem parameterization to handle
information and MU
We also proposed methods:

adding information1 on A (column-wise sparse assumptions) and S (sensor
information)
handling more complex calibration models2 (e.g., nonlinear)

1C. Dorffer, MP, G. Delmaire, G. Roussel, Informed Nonnegative Matrix Factorization Methods
for Mobile Sensor Network Calibration, IEEE TSIPN, 2018

2C. Dorffer, MP, G. Delmaire, G. Roussel, Nonlinear mobile sensor calibration using informed
semi-nonnegative matrix factorization with a Vandermonde factor, Proc. IEEE SAM’16
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Application (motivation) – 4
Reconstruction accuracy

Estimation of S
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Current work: NMF & Big Data (Yahaya et al., 2018-)

Historical NMF techniques and
their extensions (including some of
ours)

Using slow techniques for the
update rules (MU, PG)

Not well-suited for tall & skinny
matrices (as met in mobile
sensor calibration)

î

Fastening NMF

Distributed computing (e.g.,
Liu et al., 2010)

Online factorization (e.g.,
Mairal et al., 2010)

Fast solver (e.g., Guan et al.,
2012)

Randomized strategies (e.g.,
Zhou et al., 2012, Tepper &
Sapiro, 2016, Erichson et al.,
2018, or Yahaya? et al., 2018)

?F. Yahaya, MP, G. Delmaire, G. Roussel, Faster-than-fast NMF using random projections and
Nesterov iterations, Proc. iTwist’18.
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Compressing NMF

One initially aim to solve:
X ≈ A · S

≈ ·
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Compressing NMF

Dimensionality reduction of X by right multiplication with R:

X · R︸ ︷︷ ︸
XR

≈ A · S · R︸ ︷︷ ︸
SR

î Update of A still possible

≈ ·
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Compressing NMF

Dimensionality reduction of X by left multiplication with L:

L · X︸ ︷︷ ︸
XL

≈ L · A︸︷︷︸
AL

·S

î Update of S still possible

≈ ·
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How to design R and L ?

Random projections is a popular tool in big data optimization

Mathematical foundations based on the Johnson-Lindenstrauss
Lemma:
Given 0 < ε < 1, a set X of n points in Rm , and a number k > 8 ln(n)/ε2, there is a linear
map f : Rm → Rk such that :

∀u, v ∈ X , (1− ε)‖u − v‖2 ≤ ‖f (u)− f (v)‖2 ≤ (1 + ε)‖u − v‖2

î Tentative compression matrices applied to NMF
Gaussian random matrices as projection matrices (Zhou et al., 2012)
Structured random projections (Tepper & Sapiro, 2016)

î Randomized Power Iterations (RPIs, Tepper & Sapiro, 2016)

BL , (XX T )q · X · ΩL and L = QR(BL)

î Randomized Subspace Iterations (RSIs, Yahaya et al., 2018): similar to RPIs in
theory but less sensitive to round-off errors
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Problem statement

In many problems, observed data matrix X with missing entries or
confidence measures associated to each entry

î Some applications: collaborative filtering, source apportionment,
mobile sensor calibration

í Weighted NMF (WNMF):

min
A,S≥0

‖W ◦ X −W ◦ (A · S)‖F

WNMF and Big Data:
1 Most techniques are based on slow solvers (MU, PG)
2 A few with similar fastening strategies as used in unweighted NMF, e.g.,

(Dorffer et al., 2017)3

3 No existing approach with random projections

í How to use random projections in WNMF?

3C. Dorffer, MP, G. Delmaire, G. Roussel, Fast nonnegative matrix factorization and completion
using Nesterov iterations, Proc. LVA-ICA’17
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Strategies to solve Weighted NMF

Weighted Extensions of NMF aim to solve:

min
A,S≥0

‖W ◦ X −W ◦ (A · S)‖F

1 Direct computations (Ho, 2008):
Incorporating the matrix W in the update rules

2 EM-based strategy (Zhang et al., 2006)
E-step: Estimate the unknown entries of X

X comp = W ◦ X + (1n,m − W ) ◦ (A · S), (1)

where 1n,m is the n × m matrix of ones.
M-step: Apply any standard NMF technique to X comp

3 Stochastic gradient (Hsieh & Dhillon, 2011, Yu et al., 2012)
Update a single variable at a time
Only suitable for binary weights

M. Puigt Accelerating Weighted (N)MF with Random Projections FoRM ]4 13



Proposed Method

Require: initial matrices A and S
repeat

{E-step}
Compute X comp as in (1)
Apply RPIs or RSIs to X comp to compute L and R
Define X comp

L , L · X comp and X comp
R , X comp · R

{!! Compression makes E-step 3 times slower in our experiments}
{M-step}
for compt=1 to MaxOutIter do

Define SR , S · R
Solve

min
A≥0
‖X comp

R − A · SR‖F

Define AL , L · A
Solve

min
S≥0
‖X comp

L − AL · S‖F

{!! Each pass in the loop is 10-100 times faster than SotA EM-W-NMF
methods in our experiments}

end for
until a stopping criterion
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Experimental Validation

We run each test for 60 seconds and repeat 15 times the following:

we randomly generate nonnegative factor matrices Atheo and Stheo—with
n = m = 10000 and p = 5—X theo = Atheo · Stheo without additive noise

we randomly suppress data to generate X , with a sampling rate varying
from 10 to 90% (with a step-size of 20%)

Compression strategy: RPIs with q = 4 and oversampling ν = 10 (i.e., L
and R of size (p + ν)× n and m × (p + ν), resp.)

Investigating the performance of the proposed REM-W-NMF strategy
wrt. EM-W-NMF with several solvers, i.e., MU, PG, ALS, and Nesterov
iterations

Performance criteria: accuracy of reconstruction of X (Relative
Reconstruction Error—RRE) and accuracy of estimation of S
(Signal-to-Interference Ratio—SIR)

RRE ,
∣∣∣∣∣∣X theo − A · S

∣∣∣∣∣∣2
F
/
∣∣∣∣∣∣X theo

∣∣∣∣∣∣2
F

SIR =

p∑
j=1

10 log10

(∣∣∣∣∣∣ŝcoll
j

∣∣∣∣∣∣2 / ∣∣∣∣∣∣ŝorth
j

∣∣∣∣∣∣2)
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Results (EUSIPCO’19)
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Further Experiments
Preliminary Results

Stability issues with ALS (zeroing negative entries)
Other solvers: Active Set (Kim & Park, 2008), Nesterov, and their
extrapolated extensions (Ang & Gillis, 2019)

î Consistent results

NMF performance with Gaussian compression:
When ν = 10, bad!
When ν increases, better (e.g., ν = 150 î ≈ as good as Vanilla)

RPIs vs RSIs:
Similar median performance, slightly narrower envelope with RPIs
But simulations with noise not tested yet!

Vanilla GC (ν = 10) GC (ν = 150)
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Conclusion

A novel framework to combine random projections and weighted matrix
factorization

Based on an EM scheme

Outperforms non-randomized SotA EM techniques under mild conditions
Bottleneck: computing compression matrices at each E-step

Improving compression strategies
Using OPU

In future work, we aim to extend the proposed strategy to informed and
structured NMF techniques applied to mobile sensor calibration
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Thank you!

Discover our work and try our codes
Unweighted NMF with random projections: https:
//gogs.univ-littoral.fr/puigt/Faster-than-fast_NMF

Mobile sensor calibration using Informed WNMF:
https://gogs.univ-littoral.fr/puigt/Informed_NMF_
Mobile_Sensor_Calibration/
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