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Foreword: matrix factorization

Many problems in machine learning and in signal/image processing can be
rewritten as a system of equations X ~ A- S:

X S
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Foreword: matrix factorization

Many problems in machine learning and in signal/image processing can be
rewritten as a system of equations X ~ A- S:

X S

source localization/separation
X observed data matrix, A mixing matrix, S source matrix

@ If A estimated (and sensor array geometry is known)

© mixture estimation (source localization)

@ If S estimated (or if sensor array geometry is known)

© source separation (or beamforming)

FoRM #4
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Foreword: matrix factorization

Many problems in machine learning and in signal/image processing can be
rewritten as a system of equations X ~ A- S:

X S

Low-rank matrix approximation
X noisy matrix (possibly with missing entries), A weight matrix, S latent
variable matrix

@ Topic modeling (e.g., online news)
@ Collaborative filtering (e.g., Netflix Prize)

@ Graph analysis (after a transformation into a matrix — e.g., bike sharing
system)
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NMF: why is it so popular?

@ In many problems, matrices X ~ A - S are non-negative
e chemical source separation
e hyperspectral imagery
@ mobile sensor calibration

© Non-negativity on A and/or S yields better interpretability

Original
NMF

NMF applied to face dataset (source: Lee & Seung, 1999)
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NMF: why is it so popular?

@ In many problems, matrices X ~ A - S are non-negative

e chemical source separation
e hyperspectral imagery
@ mobile sensor calibration

© Non-negativity on A and/or S yields better interpretability

PCA

Principal Component Analysis applied to face dataset (source: Lee & Seung, 1999)
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Application (motivation) — 1
Mobile sensor calibration (Dorffer et al., 2015-2018)

@ Sensed phenomenon — voltage
@ Voltage = phenomenon?
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Application (motivation) — 1
Mobile sensor calibration (Dorffer et al., 2015-2018)

Dé\‘.
5)

= Sac A

@ Sensed phenomenon — voltage
@ Voltage = phenomenon?

@ Sensor calibration needed
o Not always physically possible
© Blind sensor calibration
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Application (motivation) — 2

Definitions

@ A rendezvous is a temporal and spatial vicinity between two sensors
(Saukh et al., 2013).

@ Ascene S is a discretized area observed during a time interval
[t, t + Af). A spatial pixel has a size lower than Ad, where At and Ad

define the vicinity of the rendezvous. Sensors
—_—
@) Spatial [
@ Sensor 1 samples :H:
@ |0
@ Sensor2 ) ||
() Column Ei
stacking'
© sensor3 o
@
D Rendezvous . ﬁ
Scene § Observed matrix X
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Application (motivation) — 3

Factorization

Blind calibration revisited as a weighted NMF problem (affine model)

x(1,1) -+ x(1,m—-1) 1
Wo ~Wo
x(n,1) -+ x(n,m—1) 1

a1 ap - am—q 1

LB B o Bma O

X

where
0 if x(/,j) not available

w(i, ) Z{ pj otherwise

© Solution based on specific problem parameterization to handle
information and MU
@ We also proposed methods:

@ adding information! on A (column-wise sparse assumptions) and S (sensor
information)
e handling more complex calibration models? (e.g., nonlinear)

'C. Dorffer, MP, G. Delmaire, G. Roussel, Informed Nonnegative Matrix Factorization Methods
for Mobile Sensor Network Calibration, |EEE TSIPN, 2018

2C. Dorffer, MP, G. Delmaire, G. Roussel, Nonlinear mobile sensor calibration using informed
semi-nonnegative matrix factorization with a Vandermonde factor, Proc. IEEE SAM'16
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Application (motivation) — 4

Reconstruction accuracy

M. Puigt

Estimation of S
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Application (motivation) — 4

Reconstruction accuracy

Estimation of S

RMSE

RMSE
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Current work: NMF & Big Data (Yahaya et al., 2018-)

Historical NMF techniques and
their extensions (including some of
ours)
@ Using slow techniques for the
update rules (MU, PG)

@ Not well-suited for tall & skinny
matrices (as met in mobile
sensor calibration)

M. Puigt Accelerating Weighted (N)MF with Random Projections FoRM £4 9



Current work: NMF & Big Data (Yahaya et al., 2018-)

o &
AP S
4 e -
Historical NMF techniques and Fastening NMF
their extensions (including some of e Distributed computing (e.g.,
ours) Liu et al.,, 2010)
@ Using slow techniques for the @ Online factorization (e.g.,
update rules (MU, PG) Mairal et al., 2010)
@ Not well-suited for tall & skinny e Fast solver (e.g., Guan et al.,
matrices (as met in mobile 2012)

sensor calibration) @ Randomized strategies (e.g.,

Zhou et al., 2012, Tepper &
Sapiro, 2016, Erichson et al.,
2018, or Yahaya* et al., 2018)

*F. Yahaya, MP, G. Delmaire, G. Roussel, Faster-than-fast NMF using random projections and
Nesterov iterations, Proc. iTwist'18.
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Compressing NMF

One initially aim to solve:

Q
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Compressing NMF

Dimensionality reduction of X by right multiplication with R:
X-R~A-S-R
~—~— e
Xg Sk

o Update of A still possible

Q
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Compressing NMF

Dimensionality reduction of X by left multiplication with L:

L-X~[-A-S
~— =
Xt

o Update of S still possible

Q
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How to design Rand L ?

M. Puigt

@ Random projections is a popular tool in big data optimization

@ Mathematical foundations based on the Johnson-Lindenstrauss

Lemma:
Given 0 < e < 1, aset X of npoints in R™, and a number k > 8In(n)/<2, there is a linear

map f : R™ — R¥ such that :
vu,ve X, (1—e)u—v|? < |f(u) = f()IF < (1 +e)llu—v|?
© Tentative compression matrices applied to NMF

e Gaussian random matrices as projection matrices (Zhou et al., 2012)
e Structured random projections (Tepper & Sapiro, 2016)

= Randomized Power lterations (RPIs, Tepper & Sapiro, 2016)
B2 (Xxx")7-X-Q  and = QR(B,)

= Randomized Subspace lterations (RSls, Yahaya et al., 2018): similar to RPIs in
theory but less sensitive to round-off errors
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Problem statement

@ In many problems, observed data matrix X with missing entries or
confidence measures associated to each entry

© Some applications: collaborative filtering, source apportionment,
mobile sensor calibration

© Weighted NMF (WNMF):
min [[Wo X —Wo (A-S)||
,S>0

@ WNMF and Big Data:
@ Most techniques are based on slow solvers (MU, PG)
@ A few with similar fastening strategies as used in unweighted NMF, e.g.,
(Dorffer et al., 2017)3
@ No existing approach with random projections

© How to use random projections in WNMF?

3C. Dorffer, MP, G. Delmaire, G. Roussel, Fast nonnegative matrix factorization and completion
using Nesterov iterations, Proc. LVA-ICA’17
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Strategies to solve Weighted NMF

Weighted Extensions of NMF aim to solve:

min ||[Wo X — Wo (A-S)|#
,5>0

@ Direct computations (Ho, 2008):
o Incorporating the matrix W in the update rules

@ EM-based strategy (Zhang et al., 2006)
o E-step: Estimate the unknown entries of X
XM = Wo X+ (Lnm— W)o(A-S), (1)

where 1, m is the n x m matrix of ones.
@ M-step: Apply any standard NMF technique to X¢°™P

@ Stochastic gradient (Hsieh & Dhillon, 2011, Yu et al., 2012)

o Update a single variable at a time
@ Only suitable for binary weights
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Proposed Method

Require: initial matrices Aand S
repeat
{E-step}
Compute X®°™ as in (1)
Apply RPIs or RSls to X*°™ to compute L and R
Define X[°™ £ [ . X*™ and X" £ X®°™ . R
{!! Compression makes E-step 3 times slower in our experiments}
{M-step}
for compt=1 to Maxoytter dO
Define Sk £ S-R

Solve
min ngomp —A- SRH]-‘
A>0

Define 4, 2 - A

Solve

min | X" — A, - S||»
S>0

{I Each pass in the loop is 10-100 times faster than SotA EM-W-NMF
methods in our experiments}
end for
until a stopping criterion
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Experimental Validation
We run each test for 60 seconds and repeat 15 times the following:
@ we randomly generate nonnegative factor matrices A" and S'"*°—uwith
n= m = 10000 and p = 5—X™"e° = Atheo . gtheo without additive noise

@ we randomly suppress data to generate X, with a sampling rate varying
from 10 to 90% (with a step-size of 20%)

@ Compression strategy: RPIs with g = 4 and oversampling v = 10 (i.e.,
and R of size (p+ v) x nand m x (p + v), resp.)

@ Investigating the performance of the proposed REM-W-NMF strategy
wrt. EM-W-NMF with several solvers, i.e., MU, PG, ALS, and Nesterov
iterations

@ Performance criteria: accuracy of reconstruction of X (Relative
Reconstruction Error—RRE) and accuracy of estimation of S
(Signal-to-Interference Ratio—SIR)

RRE A ’Xmeo _ . SH2 /thheo
]._

p
SIR = _10log,, (
j=1

2
-
)
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Results (EUSIPCO’19)

M. Puigt
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Results (EUSIPCO’19)
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Results (EUSIPCO’19)
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Further Experiments
Preliminary Results
@ Stability issues with ALS (zeroing negative entries)

@ Other solvers: Active Set (Kim & Park, 2008), Nesterov, and their
extrapolated extensions (Ang & Gillis, 2019)
= Consistent results
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Further Experiments

Preliminary Results

@ Stability issues with ALS (zeroing negative entries)
@ Other solvers: Active Set (Kim & Park, 2008), Nesterov, and their
extrapolated extensions (Ang & Gillis, 2019)
= Consistent results
@ NMF performance with Gaussian compression:
e When v = 10, bad!
o When v increases, better (e.g., v = 150 @ = as good as Vanilla)

— Vanila == GC(y=10) == GC (v =150)

1078} \ (R)EM-W-NeNMF — Maxoyier = 50 ||

20 40 60 80
MV (%)
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Further Experiments
Preliminary Results
@ Stability issues with ALS (zeroing negative entries)
@ Other solvers: Active Set (Kim & Park, 2008), Nesterov, and their
extrapolated extensions (Ang & Gillis, 2019)
= Consistent results
@ NMF performance with Gaussian compression:
e When v = 10, bad!
o When v increases, better (e.g., v = 150 @ = as good as Vanilla)
@ RPIs vs RSls:
e Similar median performance, slightly narrower envelope with RPIs
e But simulations with noise not tested yet!

= Vanilla === GC(v=10) === GC (= 150) — VANl  — RS|  — RPI
100
10-2
w104
o
o
1076
=
1078 W- _ — 50 ~ .
‘@EM W-NeNMF — Maxoutier = 50 1078 | [ (R)EM-W-NeNMF — Maxouer — 50 ||
20 0 w0 80 2 pr = %
MV (%) MV (%)
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Conclusion

A novel framework to combine random projections and weighted matrix
factorization

Based on an EM scheme

Qutperforms non-randomized SotA EM techniques under mild conditions
@ Bottleneck: computing compression matrices at each E-step

e Improving compression strategies

e Using OPU

@ In future work, we aim to extend the proposed strategy to informed and
structured NMF techniques applied to mobile sensor calibration
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Thank you!

Discover our work and try our codes

@ Unweighted NMF with random projections: https:
//gogs.univ—-littoral.fr/puigt/Faster—-than-fast_NMF

@ Mobile sensor calibration using Informed WNMF:
https://gogs.univ-littoral.fr/puigt/Informed_NMF_
Mobile_Sensor_Calibration/
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