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Outline of the talk

Part I
Basic introduction to blind source separation

Part II
Post-nonlinear sparse component analysis

Part III
Real-time source localization: a brief introduction
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Let’s talk about linear systems
All of you know how to solve this kind of systems:{

2 · s1 +3 · s2 = 5
3 · s1−2 · s2 = 1 (1)

If we resp. define A, s, and x the matrix and the vectors:

A =

[
2 3
3 −2

]
, s = [s1,s2]

T , and x = [5,1]T

Eq. (1) begins
x = A · s

and the solution reads:
s = A−1 · x = [1,1]T

How can we solve this kind of problem???
This problem is called Blind Source Separation.
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Blind Source Separation problem
N unknown sources sj.
One unknown operator A .
P observed signals xi with the global relation

x = A (s) .

Goal: Estimating the vector s, up to some indeterminacies.

"blibla"

"blabli"

Observations xi(t)

"blabla"

"blibli"

Sources sj(t)

Separation

Outputs yk(t)

"blabla"

"blibli"
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Goal: Estimating the vector s, up to some indeterminacies.

"blibla"

"blabli"

Observations xi(t)

"blabla"

"blibli"

Sources sj(t)
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Blind Source Separation problem
N unknown sources sj.
One unknown operator A .
P observed signals xi with the global relation

x = A (s) .

Goal: Estimating the vector s, up to some indeterminacies.

"blibla"

"blabli"

Observations xi(t)

"blabla"

"blibli"

Sources sj(t)

Separation

Outputs yk(t)

Scale or filter factor

"blabla"
"blibli"
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Classes of mixtures
Most of the approaches process linear mixtures which are divided in three
categories:

1 Linear instantaneous (LI) mixtures: xi(t) = ∑
N
j=1 aij sj(t)

2 Attenuated and delayed (AD) mixtures: xi(t) = ∑
N
j=1 aij sj(t−tij)

3 Convolutive mixtures:
xi(t) = ∑

N
j=1 ∑

+∞

k=−∞
aijk sj(t−tijk) = ∑

N
j=1 aij(t)∗ sj(t)

x1(t) x2(t)

s1(t)

s2(t)

But more recently, interest for some problems with nonlinear mixtures:

4 Post-nonlinear (convolutive) mixtures: xi(t) = fi
(

∑
N
j=1 aij(t)∗ sj(t)

)
5 Other classes of nonlinear mixtures (linear quadratic, polynomial, etc)
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How to solve Blind Source Separation?
Three main families of methods:

1 Independent Component Analysis (ICA): Sources are statistically
independent, stationary and at most one of them is Gaussian (in their
basic versions).

2 Sparse Component Analysis (SCA): Sparse sources (i.e. most of the
samples are null (or close to zero)). Purpose of this seminar

3 Non-negative Matrix Factorization (NMF): Both sources et mixtures
are positive, with possibly sparsity constraints.
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Sparse Component Analysis (1)
Can process underdetermined mixtures (i.e. more sources than
observations)

If source signals are sparse in an analysis domain (e.g. time, Fourier,
time-frequency, wavelet domains)

î ∀t, ∃k ∈ {1 . . .P}, ∀i ∈ {1 . . .N}, xi(t) = ∑
N
j=1 aij sj(t)' aik sk(t)
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Sparsity assumptions:
1 Sources are disjoint

orthogonal (WDO)
î BSS ' clustering problem

(Jourjine et al., 2000)
2 Sources overlap, except if a

few zones (to find) where only
one of them is active (Deville
et al., 2001–2012)

3 2≤ Q < P sources are always
active at each time (Cichocki
et al., 2004–2006)
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Sparse component analysis (2)

Structure
Most of the SCA approaches follow the same structure:

1 Jointly sparsifying the observations xi(t)
2 Estimating the mixing parameters:

e.g. by finding single-source zones using the ratio of observations (Deville
et al., 2001–2006), correlation (Deville et al., 2004–2012), PCA (Arberet
et al., 2006–2010), the real and imaginary parts of the observations (Reju
et al., 2010), etc...
clustering estimates of the mixing parameters in the above zones
(DEMIX, Selective K-means and K-medians, etc)

3 Estimating the sources (as an inverse problem)
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Applications
As BSS is generic, SCA methods may be applied in numerous applications:

Audio domain
Source cancelation (karaoke-like application)
Observation 1 Observation 2 Output "without singer"
Separation for re-spatialization of the sound
Example (SiSEC 2008): Observations Output 1 Output 2 Output 3
Audio enhancement (improving the perceptual sound of a speaker by
removing the surrounding noise)
Example (SiSEC 2010): Observations Output 1 Output 2
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Applications
As BSS is generic, SCA methods may be applied in numerous applications:

Astrophysical dust spectra from hyperspectral datacubes
From Berné et al. (2007–2009) and Puigt et al. (2009).
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Applications
As BSS is generic, SCA methods may be applied in numerous applications:

Images (Meganem et al., 2010)
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Part I
Basic introduction to blind source separation

Part II
Post-nonlinear sparse component analysis

Part III
Real-time source localization: a brief introduction

This work has been published in:
M. Puigt, A. Griffin, and A. Mouchtaris, “Post-nonlinear speech
mixture identification using single-source temporal zones & curve
clustering”, in Proc. of EUSIPCO, pp. 1844-1848, 2011.
M. Puigt, A. Griffin, and A. Mouchtaris, “Nonlinear blind mixture
identification using local source sparsity and functional data
clustering”, in Proc. of IEEE SAM, pp. 481-484, 2012.
M. Puigt, A. Griffin, and A. Mouchtaris, “Post-nonlinear sparse
component analysis using single-source zones and functional data
clustering”, Preprint, http://arxiv.org/abs/1204.1085.
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Post-nonlinear SCA: motivation

Most of the people use their mobile device (e.g. smartphone) as a
notebook: capturing images, videos, sounds and sharing them (social
networks, streaming video websites, etc)
But mobile devices are mobile:

Cheap and small microphone(s) & loudspeakers
î provide nonlinearities in sound recording & restitution

Example: live recordings (ex: found on Youtube)
Observed sound signals may be written as post-nonlinear (PNL)
convolutive mixtures of source signals: xi(t) = fi

(
∑

N
j=1 aij(t)∗ sj(t)

)
To takkle this problem, the litterature provides:

1 several ICA methods (limited to determined mixtures)
2 a few SCA methods requiring the WDO assumption (Theis & Amari,

2004, van Vaerenbergh & Santamaría, 2006)
î As we know that SCA outperforms ICA (Deville & Puigt, 2007), how to

extend SCA methods to PNL convolutive mixtures?
î In a first stage, how to extend LI-SCA methods to (instantaneous) PNL

mixtures xi(t) = fi
(

∑
N
j=1 aij · sj(t)

)
?
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Structure of the proposed method(s)

sN

...
s1

A zP

z1

fP

...

f1

xP

x1

gP

...

g1

eP

e1

“A−1”
yN

...
y1

Mirror structure in PNL-ICA (P≥ N)
1 Estimate the inverse gi of the NL functions fi
2 Linearize the mixtures
3 Estimate A−1 and deduce the sources

Mirror structure in PNL-SCA ( P≥ N or P < N)
1 Estimate the NL functions fi

1 Cut xi(t) in temporal analysis zones T
2 Find temporal single-source zones
3 Estimate NL mappings

2 Linearize the mixtures (as an inverse problem)
3 Estimate A (e.g. apply a LI-SCA method)
4 Estimate the sources (as an inverse problem)

What about the sparsifying transform?
Not a good idea (not sparser observations) î application: speech signals
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Geometrical point of view
Let us imagine that, in one zone, only one source, say sk, is active...
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∀i ∈ {1, . . . ,P} xi(t) = fi (aiksk(t))⇒ sk(t) =
f−1
i (xi(t))

aik

and

xi(t) = fi

(
aik

a1k
f−1
1 (x1(t))

)
= φik(x1(t))

Questions:
How to find single-source zones?
How to estimate φik?
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Single-source confidence measures (1)
Mutual information (Puigt et al., 2011)

In linear mixtures, a source is isolated iff observations are proportional
(correlation – Deville & Puigt, 2007)
In PNL mixtures, need to measure the nonlinear correlation between
observations.
Done using mutual information (Dionisio et al., 2004)

I (x) =−E
{

log
∏

P
i=1Pxi(xi)

Px(x)

}
which may be normalised as Inorm(x) =

√
1− e−2I (x).

î This implies that sources are mutually independent (4 for
speech—Puigt et al., 2009)
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Single-source confidence measures (2)
Manifold learning based measures (Puigt et al., 2012a)

Alternative to mutual information
If the NL functions are smooth, then φik are smooth and locally linear

î We can locally apply linear measures (Manifold learning)
Linear Tangent Space Approximation (LTSA—van der Maaten et al.,
2009) approximates the manifold around a value by its tangent in this
point

1 We consider each point ti of a zone T and we find its K-NN
2 We apply a linear SSCM in this neighbourhood

correlation (Deville & Puigt, 2007): Cx1,xj(ti)

ratio of eigenvalues (Arberet et al., 2010): R(ti) =
λ1(ti)

∑
K
j=1 λj(ti)

î Global single-source confidence measure as the geometric mean of all
the local SSCMs, respectively denoted C (x) and R (x)
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Single-source confidence measures (3)

Finally...
We look for zones T such that SSCM(x)> 1− ε1

Case of non-null unactive sources
Problem may appear if inactive sources are constant but non-zero as
xi(t) = fi (aiksk(t)+αi(T)) where αi(T) = ∑j 6=k aijsj

Not a problem in Linear mixtures where observations may be centered...
å If all fi(0) = 0 (not limiting assumption 4), we discard all the estimated

curves φ̂ik which do not satisfy
∣∣∣φ̂ik(0)

∣∣∣< ε2.
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Functional data analysis and clustering (1)

Different single-source zones may lead to scattered functions associated
with the same source
Interest to cluster all these zones in order to get an accurate estimate of
the nonlinear mappings φik

Previously proposed methods also clustered data:
1 Theis and Amari: geometrical preprocessing sensitive to noise or

non-ideal single source zones
2 Van Vaerenbergh and Santamaría: spectral clustering with curve distances

limitations and which does not allow the curves to intersect (while all
fi(0) = 0)⇒ additional curve shape assumptions

We propose of taking advantage of the single-source zones: we
estimate some parameters which adequately describe each scattered
function and we cluster them.
In particular, we test two families of methods:

1 We use a classical functional data clustering method
2 We propose a new approach well-suited to the considered problem.
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Functional data analysis and clustering (2)

Filtering functional data clustering
Based on B-spline approximation (Abraham et al., 2003): we approximate
any nonlinear function with respect to a basis of polynomials

1 Select all the single-source zones and fix some knots locations
2 In each above zone, estimate φ̂ik using B-splines (all the B-spline

coefficients have the same meaning and describe each curve shape)
3 Cluster the B-spline coefficients, in order to cluster the curves

(K-medians)

Proposed method (Puigt et al., 2012a)
Based on manifold learning around 0

1 For each zone, find the K-NN points around 0
2 Estimate the linear DOA in each zone with an approach of the

litterature (e.g. based on correlation or PCA)
3 Cluster these estimated DOAs (K-medians)

M. Puigt Blind linear and nonlinear mixture identification using source sparsity assumptions Dec. 20, 2012 19



Final curve estimation and next steps of the separation
approach

sN

...
s1

A zP

z1

fP

...

f1

xP

x1

gP

...

g1

eP

e1

“A−1”
yN

...
y1

We finally got separated functions that we e.g. can estimate thanks to
B-splines, with much more knots and not-fixed locations.
We can apply one approach of the literature to invert the nonlinearities
(change the curves in lines).
We then get a linear problem for which the mixing parameters can be
estimated (slopes of the obtained lines).
But we only focused on the nonlinearities estimation because “it is of
major importance for solving the BSS problem.”

Let us see an example!
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Example

N = 3 sources (5 s, Fs = 20 kHz, silent parts) and P = 2 sensors

PNL mixture: A =

[
1 1 0.9
−0.9 0.5 1

]
and

{
f1(t) = tanh(t)+ t
f2(t) = tanh(10 t)

Mutual information estimation with 100 samples per analysis zone,
ε1 = 0.01, ε2 = 0.1

FDC technique: ξi =−1.5+0.3i for i ∈ {0, . . . ,10} with B-splines of
degree 4
Accurate classification and estimation, MSE: 2.5e-4, 5.3e-5, and 2.1e-5

Detailed performance of the proposed approaches (Puigt et al.,
2012b)
We performed many tests (several NL functions, several mixing matrices
while method’s parameters vary) which show that:

Inorm(x) and C (x) are better-suited than R (x)

Our manifold-learning clustering approaches are more flexible than
B-spline functional data clustering one
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Despite the strong NL, we find single-source zones
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On the influence of SSCMs
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Example
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Clustered data
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Conclusion and future work

A general framework for extending linear SCA to PNL mixtures (and
even more general NL mixtures, see Puigt et al., 2012a)
Estimation of the non-linearities combines single-source zones with
functional data clustering
We proposed some Manifold-learning-based techniques for both tasks
We also tested classical measures (mutual information and B-splines
functional data clustering)
Our results show that our approaches allow an accurate estimation of
the nonlinearities
We still have to invert them

May be done with an approach of the litterature
Or with a future proposed method...

Our approach restricted to signals which are sparse in the time domain
î not well-suited to music
Still need to investigate PNL convolutive mixtures
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Part I
Basic introduction to blind source separation

Part II
Post-nonlinear sparse component analysis

Part III
Real-time source localization: a brief introduction

This work has been published in:
D. Pavlidi, M. Puigt, A. Griffin, A. Mouchtaris, “Real-time multiple
sound source localization using a circular microphone array based on
single-source confidence measures”, in Proc. of IEEE ICASSP, pp.
2625-2628, 2012.
D. Pavlidi, A. Griffin, M. Puigt, A. Mouchtaris, “Source counting in
real-time sound source localization using a circular microphone array”,
in Proc. of IEEE SAM, pp. 521-524, 2012.
A. Griffin, D. Pavlidi, M. Puigt, A. Mouchtaris, “Real-time multiple
speaker DOA estimation in a circular microphone array based on
matching pursuit”, in Proc. of EUSIPCO, 2012.
Journal paper just submitted to IEEE TASLP
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Microphone arrays
Geometry

Linear arrays
Simple...

But ambiguous!

m1 m3 m4m2 x

y
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Microphone arrays
Geometry

Linear arrays
Simple...
But ambiguous!
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Microphone arrays
Geometry

Circular arrays
Remove ambiguities!

mM
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m1
mi
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θ0
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Microphone arrays
Propagation Models

mi

Reverberant Model

Time domain

xi(t) =
P

∑
g=1

hig(t)∗ sg(t)+ni(t)

Time-Frequency (TF) domain

Xi(t,ω)=
P

∑
g=1

Hig(ω)·Sg(t,ω)+Ni(t,ω)
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State of the Art

Single source localization
Based on Time difference of arrival

the GCC family [Knapp 1976]

Multiple source localization
1 Based on statistics

beamforming (2nd order statistics — e.g. multiple signal classification
(MUSIC))[Argentieri 2007]
Independent component analysis (2nd order or higher-order statistics)
[Lombard 2008]

2 Using the sparsity paradigm
Sparse component analysis (SCA) with W-disjoint orthogonality
[Swartling 2006]
Sparse component analysis with single-source confidence measure
(framework of the present work)
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Single sound source localization using a circular
microphone array [Karbasi 2007]
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mi+1

τi,i+1(θ)

Gθ
i,i+1(ω) = ∠Ri,i+1(ω) = e−jωτi,i+1(θ)

Phase rotation factor:
PRFmi→m1(φ) = e−jω(τ1,2(φ)−τi,i+1(φ))

Circular integrated cross spectrum:

CICS(φ),
M
∑

i=1
PRFmi→m1(φ)G

θ
i,i+1(ω)

θ̂ = arg max
0≤φ<2π

|CICS(φ)|.
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Multiple Sound Source localization method
If we combine the linear SSCM (e.g. the correlation) with the above
single-source localization approach, we provide a real-time
multiple-source localization method (Pavlidi et al., 2012a).
Algorithm:

1 We consider an history length of the signal (typically 1 s)
2 We cut it in frames (typically 2048 points)
3 We compute a FFT on each frame
4 We find Constant-time single-source zones (Puigt & Deville, 2007)
5 We estimate the associated DOA in each of these zones
6 We derive a (smoothed) histogram of the above DOAs

7 We count the number of sources and we estimate their actual DOAs
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Source counting

We proposed 3 methods for source counting (Pavlidi et al., 2012b)
But only the most efficient one is here described
Based on Matching Pursuit (model the histogram as linear combination
of pulses)
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Define γ = [γi], i = 1, · · ·PMAX.

Correlate the source atom with the
histogram

Detect highest peak, set i = 1

Calculate its contribution:
δi = ∑j

yi,j−yi+1,j
y1,j

If δi ≥ γi, remove it, increment i.

Continue iteratively until δi < γi
(or i = PMAX)
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of pulses)
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Final DOA estimation

Two proposed methods: taking the indices of the highest value of the
peaks or using Matching Pursuit (Griffin et al., 2012)
Key idea: The width of the above pulses is really important for getting
accurate estimates (its shape may vary with the mixing conditions).
Ideally, its optimal width should be estimated from the histogram (but
time consumming)

î Combine two widths (was shown to be an acceptable trade-off)

î The whole method runs 55% real-time!
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Performance (1)
DOA estimation accuracy

Simulations (6 sources, additive white noise, T60 = 0.25 s, room size:
4m×6m×3m, 8 microphones) and comparison with Wideband Music,
ICA–GSCT, and WDO-based method.
Our approach is the less computational demanding (2.6E6 vs. between
3.9E6 & 35E6 operations)...

But it outperforms all the methods of the litterature except the WDO
one (perf. criterion: MAEE)
It outperforms WDO in a 2-sources scenario
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Performance (2)

Source counting accuracy
Same simulated environment
4 intermittent sources
Different history lengths (reponsiveness of the system)
Different SNR conditions
We measure a success rate of good source number estimation

History SNR (dB)
length (s) 0 5 10 15 20

0.25s 44.1% 60.2% 77.6% 85.0% 88.4%
0.5s 61.2% 81.7% 94.2% 96.0% 96.6%

1s 82.1% 99.2% 100% 100.0% 100.0%
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Performance (3)
Experiments in real environment

Real speakers, static or moving around the array, who speak
continusouly
Typical office room (same dimension as in
simulations—4m×6m×3m) with A/C units (SNR'15 dB)
8 omnidirectional Shure SM93 microphones, a TASCAM US2000
8-channel USB sound card, a Standard PC, Intel 3.00 GHz Core 2 CPU,
4 GB RAM, signal processing software in C++ and user interface in C]
Good trakking of the sources
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Conclusion

Real-time multiple source counting and localization method (55% of
the available time)
Source sparsity (including WDO assumption) was shown to help
getting good performance (even if the acoustic model is not that
realistic!)
SSCM helps to get more accurate DOAs and to be much faster!
Left available time may be used e.g. for speaker diarization or
separation
Effects of hardware (cheap microphones)?
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Thank you for your attention

Questions?
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