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ABSTRACT

In this paper, we consider the problem of blindly calibrating a mo-
bile sensor network—i.e., determining the gain and the offset of each
sensor—from heterogeneous observations on a defined spatial area
over time. For that purpose, we previously proposed a blind sensor
calibration method based on Weighted Informed Nonnegative Matrix
Factorization with missing entries. It required a minimum number
of rendezvous—i.e., data sensed by different sensors at almost the
same time and place—which might be difficult to satisfy in practice.
In this paper we relax the rendezvous requirement by using a sparse
decomposition of the signal of interest with respect to a known dic-
tionary. The calibration can thus be performed if sensors share some
common support in the dictionary, and provides a consistent perfor-
mance even if no sensors are in exact rendezvous.

Index Terms— Blind calibration, mobile sensor networks, in-
formed nonnegative matrix factorization, sparse data analysis

1. INTRODUCTION

Crowdsensing is a new way to acquire measurements from a mo-
bile sensor network [1]. This technique exploits the data aggregated
by mobile devices—e.g., smartphones—from a crowd of volunteers
along their daily moves. The data are then collected and fused to
improve their reliability. Currently, crowdsensing appears to be an
innovative way to deploy a massive quantity of mobile sensors along
a possibly large area and during a long time, with a limited cost.
In crowdsensing applications, most sensors—which are usually em-
bedded in mobile devices—are low cost and must be remotely cali-
brated, as it may not be possible to request these devices to regularly
go to a laboratory in order to perform sensor calibration. As a conse-
quence, specific Blind Mobile Sensor Calibration (BMSC) methods1

have been proposed in, e.g., [9–12]. All these methods are exploit-
ing the rendezvous model [13] which assumes that sensors in the
same spatio-temporal vicinity should acquire the same data. Con-
trary to [9], the authors in [10–12] consider that some of the avail-
able sensors are calibrated. In particular, the methods in [10,11] use
a multi-hop calibration structure: calibrated sensors are used to cali-
brate uncalibrated ones which lie in the same vicinity. These sensors
are then considered as calibrated and used to calibrate other sensors
when they move. The operation is then repeated until there is no
more uncalibrated sensors. Such a multi-hop calibration procedure
might suffer from calibration error propagation. On the contrary, in
our previous work [12], we revisited BMSC as an informed matrix

This work was funded by the ”OSCAR” project within the Région Nord
Pas de Calais ”Chercheurs Citoyens” Program.

1It should be noticed that calibration may refer to several different—while
sometimes linked—problems and have been tackled, e.g., for fixed sensor
gain calibration [2, 3], gain/offset calibration [4] or gain/phase calibration
[5–8].
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Fig. 1. From a scene S (with n = 16 spatial samples, m = 3
sensors and 2 rendezvous) to the data matrix X (white pixels mean
no observed value).

factorization problem which provided the calibration of all the sen-
sors at the same time. Our approach assumed the sensor network to
be dense enough, which might be not satisfied in large areas where
few sensors lie.

In this paper, we thus propose a novel calibration method with a
relaxed rendezvous model. Indeed, we assume that the sensed phys-
ical phenomenon can be sparsely represented in a given dictionary,
which is used to regularize the calibration even if the sensors are not
in rendezvous.

The remainder of the paper is organized as follows. We intro-
duce the BMSC problem in Section 2 and recall our previous ap-
proach in Section 3. We then propose our extended method in Sec-
tion 4 and investigate its performance in Section 5. Section 6 pro-
vides the conclusion and the future work directions of this paper.

2. PROBLEM STATEMENT

In this paper, we assume that a geographical area is observed by
m heterogeneous, geolocalized, time-stamped, mobile, and possibly
uncalibrated sensors along time. We now introduce the first defini-
tions and assumptions used in this paper.

Definition 1 ( [13]) A rendezvous is a temporal and spatial vicinity
between two sensors.

The vicinity is characterized by ∆t and ∆d which respectively cor-
respond to a time duration and a distance. Depending on the sensed
physical phenomenon, the values of ∆t and ∆d may drastically
vary [13].

Definition 2 ( [12]) A scene S is a discretized area observed during
a time interval [t, t + ∆t). The size of the spatial pixels are set so
that any couple of points inside the same pixel have a distance below
∆d.



A scene can be seen as a grid of locations where sensors go to and
where they sense a physical phenomenon. When two sensors share
a common position in a scene, they are in rendezvous (see Fig. 1).

Assuming an affine calibration model—i.e., that each of the m
sensors provides an output linked to the sensor phenomenon via an
affine relationship—an available data point xij provided by Sensor
j and associated to the ith location of S then reads

xij ' yi · αj + βj , (1)

where αj and βj are the unknown gain and offset associated with
Sensor j, respectively, and yi is the sensed phenomenon at Location
i. By respectively defining G and F the n× 2 and 2×m matrices

G,

[
y1 · · · yn
1 · · · 1

]T
and F,

[
α1 · · · αm

β1 · · · βm

]
, (2)

the matrix form of Eq. (1)—when all the data points xij are
available—can then be expressed as a low-rank matrix which reads

X'G · F. (3)

This factorization can be performed in practice if X is well-
conditioned, which implies that we observe enough diversity in
the first column of G and in the rows of F .

We also assume that one sensor—say Sensor m—is calibrated2

and that its calibration parameters are respectively equal to3

αm = 1 and βm = 0. (4)

i.e., if the value xim is available, we get xim ' yi. Lastly, we
assume that the observed phenomenon and the sensor calibration pa-
rameters are nonnegative, which implies that the problem (3) can
be tackled by Weighted Informed Nonnegative Matrix Factorisation
(WINMF), as we show in the next section.

3. PREVIOUSLY PROPOSED BMSC METHOD

As explained above, we aim to factorize X as a product G · F of
nonnegative matrices G and F . This turns out to be a WINMF prob-
lem which can be tackled by, e.g., the approach in [14]—extending
the multiplicative update NMF approaches in [15–17]—that we used
and generalized in [12]. Indeed, the last columns inG and F are per-
fectly known as well as some entries in the first column of G. This
information can be used as a specific parameterization where only
the free parts of G and F are updated [12, 14]. WINMF then reads

{G,F} = arg min
G̃≥0,F̃≥0

∣∣∣∣∣∣W ◦ (X − G̃ · F̃)∣∣∣∣∣∣2
F
,

s.t. G̃ = ΩG ◦ ΦG + Ω̄G ◦∆G,

F̃ = ΩF ◦ ΦF + Ω̄F ◦∆F ,

(5)

where W is the n×m weight matrix whose entries are defined as

wij ,

{
0 if xij is not available,
ρj otherwise, (6)

2If no calibrated sensor is available, it is still possible to perform a relative
calibration, thus providing some consistency in the sensor responses [4].

3In the considered crowdsensing application, some highly accurate and
calibrated sensors provide measurements of the sensed phenomenon. As we
are not provided neither their calibration model nor their calibration parame-
ters, we fix αm and βm as in Eq. (4) so that the observed values are equal to
the calibrated measurements.

where ρj is a weight coefficient associated with Sensor j, ◦ denotes
the Hadamard product, ΩG (respectively ΩF ) is a binary matrix in-
forming the presence/absence of constraints in G (respectively F ),
ΦG (respectively ΦF ) is the matrix containing the set entries in G
(respectively F ), ∆G (respectively ∆F ) is the matrix of the free
parameters in G (respectively in F ), and Ω̄G , 11n×2 − ΩG (re-
spectively Ω̄F , 112×m − ΩF ), where 11i×j is the i × j matrix of
ones.

The solution of Eq. (5) can be estimated through an alternating
strategy which aims to solve both optimization sub-problems:

F = arg min
F̃≥0

∣∣∣∣∣∣W ◦ (X −G · F̃)∣∣∣∣∣∣2
F
,

s.t. F̃ = ΩF ◦ ΦF + Ω̄F ◦∆F ,
(7)

and
G = arg min

G̃≥0

∣∣∣∣∣∣W ◦ (X − G̃ · F)∣∣∣∣∣∣2
F
,

s.t. G̃ = ΩG ◦ ΦG + Ω̄G ◦∆G.
(8)

In [12, 14], we proposed the following update rules to solve these
subproblems:

F ← ΦF + ∆F ◦ ΩF ◦
[
GT (W ◦ (X −G · ΦF )+)

GT (W ◦ (G ·∆F ))

]
, (9)

and

G← ΦG + ∆G ◦ ΩG ◦
[

(W ◦ (X − ΦG · F )+)FT

(W ◦ (∆G · F ))FT

]
, (10)

where the superscript + denotes the function defined as (z)+ ,
max{ε, z}, where ε is a small user-defined threshold.

As initializing the NMF is known to be tricky, we proposed to
use a matrix completion algorithm to complete X and then, to re-
place the missing entries in the first column of G by the correspond-
ing entries in the last column of X . Finally, F was initialized from
the completed matrices X and G using nonnegative least squares.

In [12], we showed that if the number of measurements is
large enough and if there are enough rendezvous between sensors,
the WINMF-based calibration is accurate. However, in a practical
crowdsensing application, the above assumption on the number of
measurements and rendezvous is more likely to be unsatisfied if a
few sensors observe a large area. This implies a poor calibration
accuracy, as shown in, e.g., [12]. We thus propose in the next sec-
tion an extension of this method which uses a relaxed rendezvous
assumption.

4. BMSC WITH RELAXED RENDEZVOUS

In order to improve the robustness of the method against the number
of rendezvous, we make one more assumption on the sensed phe-
nomenon, leading to an extra constraint in the optimization problem
(5). We assume that the sensed phenomenon y on a scene S allows
a sparse decomposition according to a known dictionary D, i.e.,

∃a ∈ Rq s.t. y ' D · a, (11)

with p � q non-zero elements in a. From Eq. (2), the first row in
G—denoted g

1
below—is equal to y and G may be rewritten as

G =

[
aT · DT

1 · · · 1

]T
. (12)



Injecting this new structure of G in the relationship (3) then leads to
the modified optimization problem:

{G,F, a} = arg min
G̃≥0,F̃≥0,ã

∣∣∣∣∣∣W ◦ (X − G̃ · F̃)∣∣∣∣∣∣2
F

+ λ ·
∣∣∣∣∣∣g̃

1
−D · ã

∣∣∣∣∣∣2
2

+ µ‖ã‖1

s.t. G̃ = ΩG ◦ ΦG + Ω̄G ◦∆G,

F̃ = ΩF ◦ ΦF + Ω̄F ◦∆F ,

(13)

where λ and µ are weights associated with the penalization terms in
Eq. (13) and g̃

1
stands for the first column of G̃. It should be noticed

that such an optimization problem differs from classical NMF with
sparse assumptions [18] since a dictionary is added into the decom-
position. Moreover, its resolution is tricky since such a problem is
non-convex with respect to the three unknowns G, F , and a but it
can be decomposed into three convex sub-problems where we aim to
successively and alternatingly estimate one unknown. In that case,
F can be estimated by solving Eq. (7), G using

G = arg min
G̃≥0

∣∣∣∣∣∣W ◦ (X − G̃ · F)∣∣∣∣∣∣2
F

+ λ ·
∣∣∣∣∣∣g̃

1
−D · a

∣∣∣∣∣∣2
2
,

s.t. G̃ = ΩG ◦ ΦG + Ω̄G ◦∆G,
(14)

and a while solving

a = arg min
ã

∣∣∣∣∣∣g̃
1
−D · ã

∣∣∣∣∣∣2
2

+ µ ||ã||1 . (15)

We then solve these problems alternately for each unknown. In or-
der to derive the update rules for G, we take into account the penal-
ization term in Eq. (14) by considering a new NMF problem where
we add a new column in W , X , and F , respectively, thus providing
new matrices defined as follows:

W ,
[
W,
√
λ · 11n×1

]
, X , [X,D · a] , andF ,

[
F,

(
1
0

)]
.

(16)
Provided an accurate sparse approximation of g

1
, all the sensors are

in rendezvous—since the last column of X is fully known—which
highly relax the original assumption and which was never considered
in the literature to the best of the authors’ knowledge.

Using these matrices, it is then straightforward to see that the
problems (14) and (8) are equivalent—except that we respectively
replace W , X , and F byW , X , and F in Eq. (8)—so that we can
use the update rules (10). F can be estimated using the update rules
(9). Lastly, the optimization problem in Eq. (15) classically provides
sparse approximations of ĝ1. Such a problem can be solved, e.g.,
with Basis Pursuit Denoising or its numerous extensions [19], for
which it is well known that the value of µ should be carefully cho-
sen with respect to the additive noise variance. Altenatively, greedy
approaches were proposed and in this paper, we used Orthogonal
Matching Pursuit (OMP) [20]—which iteratively incorporates atoms
into the sparse decomposition—as we found it to provide accurate
approximations in preliminary tests. The algorithm of our proposed
WINMF method is provided in Algorithm 1.

Let us stress again the advantages of the proposed formulation of
WINMF: a constraints g

1
to be a linear combination of a few atoms

of the dictionary. This allows the method not to require anymore
exact rendezvous but relaxed ones. However, we still need at least
two measurements per sensor in order to be able to perform the cali-
bration. Moreover, we notice in experiments that the convergence of

this improved WINMF calibration is greatly accelerated, which was
one of the limitations of the method in [12]. We provide in the next
section a detailed performance analysis of the approach proposed in
this paper.

Data: W , X , and D
Result: G , F , and a
initialization: G0 , F 0;
for i = 1 to Max Iter do

estimating ai using OMP with D and Gi−1;
updating F i using (9);
definingW , X and F like in (16);
updating Gi using (10) withW , X and F ;

end
Algorithm 1: Penalized NMF algorithm.

5. SIMULATIONS

In this section, we aim to investigate the enhancement provided by
our proposed informed NMF method for BMSC. For that purpose,
we consider the simulation of crowdsensing-like particulate matter
sensing used in [12]. The scene is a 10 × 10 discretized area (the
length of y is thus equal to n = 100) which is observed by m =
26 sensors, i.e., m − 1 uncalibrated and mobile dust sensors [21]
connected to mobile devices and one calibrated, high quality, and
mobile sensor4.

The observed concentrations in y range between 0 and 0.5 mg/m3,
for which the sensor response is assumed to be affine [21]. For each
uncalibrated sensor, each observed data point represents a nonneg-
ative voltage linked to the corresponding ground truth point in y
according to Eq. (1). We then get a 100 × 26 theoretical observa-
tion matrix for which we randomly keep k + l samples in X only,
where k (respectively, l) is the number of calibrated (respectively,
uncalibrated) sensor samples—with k � l—hence providing the
irregular spatial sampling over the scene. Lastly, Gaussian noise
realizations may be added to the observed uncalibrated sensor data
and the weight coefficients ρj defined in Eq. (6) are set to ρj = 1.
The dictionary is constructed with q = 62 different atoms. Actu-
ally, it was designed so that g

1
could be reconstructed from p = 2

different atoms. As in [12], we aim to explore the influence of the
number of rendezvous between calibrated and uncalibrated sensors,
the number of missing entries in X and the influence of the input
SNR to the BMSC performance. For each test condition—i.e., one
number of rendezvous, one proportion of missing entries, or one in-
put SNR—25 simulations are performed. In each run, we randomly
set the positions of the samples inX in the three experiments and we
generate different noise realizations in the last one. The number k
of calibrated sensor values in the m-th column of X is set to k = 4
in all the tests.

Except when we make these values vary, the proportion of un-
calibrated sensors to have rendezvous with calibrated ones, and the
proportion of missing entries in X are set to 30% and 90%, respec-
tively. In addition to the noiseless case, the input SNR varies from
10 to 90 dB. Lastly, the methods are stopped after 200000 iterations.
We also vary the value of λ from 0.1 to 10 but do not notice any
major influence of this parameter. The plots provided in this paper
are obtained with λ = 10.

4Actually, we get k fixed, calibrated, and accurate sensors whose obtained
values are modeled as those of the m-th sensor in the BMSC problem.
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Fig. 2. Evolution of the RMSE according to (a) the number of iterations, (b) the missing value proportion, (c) the rendezvous proportion, and
(d) the input SNR .

The calibration error is quantified by the Root Mean Square Er-
ror (RMSE) which is computed between the vector of the true un-
known5 gains α , [α1 · · ·αm−1] and the vector of the reconstructed
ones α̂ = [α̂1 · · · α̂m−1], i.e.,

RMSE(α, α̂) =
‖α− α̂‖2√
m− 1

. (17)

Similarly, the RMSE between theoretical and estimated offsets is
computed but is not shown in this paper for space considerations.

Figure 2 shows the different plots of the different experiments
realized in this paper. The red dashed line (respectively the blue
line) corresponds to the median RMSE obtained with our previous
approach (respectively the proposed method) applied on 25 inde-
pendent tests while the red (respectively the blue) colored area cor-
responds to the envelope of the RMSEs obtained with our previous
method (respectively the proposed approach).

Figure 2.(a) shows the RMSE evolution with respect to the it-
erations. One can see that the slowest RMSE convergence curve
of our proposed BMSC approach is much faster than the median
RMSE convergence curve provided by our previous method. The
median RMSE of our proposed approach is almost constant after
20000 iterations—when the median RMSE of our previous one
needs 60000 iterations—while being lower than the median RMSE
of our previous method.

Figure 2.(b) shows the influence of the missing value propor-
tion on the calibration performance. Here again, our new approach
outperforms the previous one. It should be noticed that there is one
high RMSE with no missing entry in X in one of the tests, hence a
large envelope. Actually, in this particular case, the WINMF did
not converge, hence a large RMSE which should be lower if we
ran more iterations. When 95% of the data are missing, one of
the assumptions—i.e., the diversity of the measurements or their
minimal number per sensors—is not satisfied, hence a large me-
dian RMSE. However, the lowest part of the blue envelope shows
a RMSE around 1e-14, which is not reached without the dictionary,
hence the interest of our proposed approach.

We plot in Fig. 2.(c) the influence of the number of rendezvous
between calibrated and uncalibrated sensors when 90% of the data
are missing. As expected, the calibration performance reached by
our proposed calibration technique takes advantage of the dictionary
and provides a consistent performance, even when no rendezvous is
met. On the contrary, our previous approach provides much higher
RMSEs when the rendezvous proportion is below 20%.

5Due to Eq. (4), αm is perfectly known, thus resulting inm−1 unknown
gains to be estimated.

Lastly, Fig. 2.(d) shows the influence of the input SNR. As ex-
pected, the RMSE increases when the input SNR decreases. Both
approaches provide similar performance in the noisy cases, which
was expected as we do not use the dictionary to denoise the observed
data.

6. CONCLUSION

In this paper, we revisited blind mobile sensor calibration as a ma-
trix factorization problem. Assuming any of the matrices in the
factorization to be nonnegative and the sensed phenomenon to be
sparsely represented in a dictionary, we improved our previous in-
formed NMF [12] for the considered application. The approach
was shown to be robust to the number of missing entries and to the
number of rendezvous between calibrated and uncalibrated sensors.
However, some assumptions—e.g., the minimum number of mea-
surements per sensor or the fact that X is well-conditioned—might
seem restrictive. It should be noticed that the approach proposed in
this paper can be extended to the case of multiple scenes, by stacking
all the observed—and sufficiently different—matrices in one unique
well-conditioned matrix, so that we multiply the number of measure-
ments. In that case, it is more likely that the calibration assumptions
will be satisfied.

In future work, we aim to explore several directions. As men-
tioned above, joint-factorization will be investigated. Moreover, the
NMF method proposed in this paper is an extension of the Lee and
Seung multiplicative update algorithm, which is known to be slow
to converge when the size of the data matrix is large. Extending re-
cent and fast NMF methods to our informed framework will be con-
sidered. Lastly, we will investigate other calibration models, well-
suited to gaz sensors for example.
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