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Abstract—Recently, we proposed an approach inspired by
Sparse Component Analysis for real-time localization of multiple
sound sources using a circular microphone array. The method
was based on identifying time-frequency zones where only one
source is active, reducing the problem to single-source localization
for these zones. A histogram of estimated Directions of Arrival
(DOAs) was formed and then processed to obtain improved DOA
estimates, assuming that the number of sources was known. In
this paper, we extend our previous work by proposing three
different methods for counting the number of sources by looking
for prominent peaks in the derived histogram based on: (a)
performing a peak search, (b) processing an LPC-smoothed
version of the histogram, (c) employing a matching pursuit-
based approach. The third approach is shown to perform very
accurately in simulated reverberant conditions and additive noise,
and its computational requirements are very small.

I. INTRODUCTION

For more than 30 years, audio source localization using
an array of sensors has generated wide interest in the signal
processing community [1]. Indeed, applications are numerous,
including speaker location discovering in a teleconference,
event detection and tracking, and robot movement in an
unknown environment.

Among all the approaches proposed in the literature, numer-
ous ones are based on Time Difference Of Arrival (TDOA) [2]
at different microphone pairs for estimating the Direction of
Arrival (DOA). Many of them are based on the Generalized
Cross-Correlation PHAse Transform (GCC-PHAT).

As an alternative to the above classical approaches, Sparse
Component Analysis (SCA) methods [3, ch. 10] may be seen
as natural extensions of multiple sensor single source local-
ization methods to multiple source localization. They basically
assume that one source is dominant over the others in some
time-frequency windows or “zones”. Using this assumption,
the multiple source propagation estimation problem may be
rewritten as a single-source one in these windows or zones, and
the above methods estimate a mixing/propagation matrix, and
then try to recover the sources. Their main advantage is their
flexibility to deal with both the situations when the number
of sources is respectively (strictly) lower or higher than the
number of sensors. If we estimate this mixing matrix and if
we know the geometry of the microphone array, we may then
localize the sources, as proposed in [4]–[6], for example.

Most of the SCA approaches require the sources to be
W-disjoint orthogonal (WDO) [7]—in each time-frequency

window, at most one source is active—which is approximately
satisfied by speech in anechoic environments but not in rever-
berant conditions. On the contrary, other methods assume that
the sources may overlap in the time-frequency domain, except
in some tiny “time-frequency analysis zones” where only one
of them is active (e.g. [3, p. 395], [8]). Unfortunately, most
of the SCA methods and their DOA extensions are off-line
methods (e.g. [5] and the references within). However, [4] and
[6] are frame-based methods: [4] requires WDO sources while
our previous proposed method [6] used single-source zones as
in [8]. Note that concepts involved in [5] and [6] look quite
similar. However, our proposed approach [6] is real-time and
uses a circular array of microphones while [5] works off-line
and processes two-microphone only configurations.

A second issue in source localization consists of estimating
the number of sources, known as source counting. Many
methods of the literature propose estimating the intrinsic
dimension of the recorded data, i.e. for an acoustic problem,
they estimate the number of active sources at each time instant.
Most of them are based on information theory (see [9] and the
references within). In our considered problem, the estimation
of the number of sources is different. Indeed, the different
single-source zones may lead to a set of DOAs that we need to
cluster. In classification, some approaches for estimating both
the clusters and their numbers have been proposed (e.g. [10]),
while several solutions specially dedicated to DOAs have been
tackled in [3, p. 388] and [11].

In this paper, we propose an extension to our previous
work in [6] which both counts the number of sources and
locates them in real time. For that purpose, we propose three
approaches working on the histogram of estimated DOAs and
based on the amplitude of the histogram, its linear predictive
coding analysis, and matching pursuit.

II. PROBLEM STATEMENT

We assume that M microphones of an equispaced circular
array receive an anechoic mixture of P sources:

xi(t) =

P∑
g=1

aigsg (t− ti(θg)) + ni(t), i = 1, · · · ,M

(1)
where xi(t) is the signal received by microphone mi, aig
are attenuation factors, ti(θg) is the delay from source sg to
microphone mi, θg is the DOA of the source sg , and ni(t)



is the noise at mi. For one given source, the relative delay
between signals at adjacent microphones, hereafter referred
to as microphone pair {mimi+1}, with the last pair being
{mMm1}, is given by

τmimi+1
(θg) , ti+1(θg)−ti(θg) = l sin(A−θg+(i−1)α/c),

(2)
where l is the distance between adjacent microphones, A is the
obtuse angle formed by the chord m1m2 and the x-axis (with
m1 placed on the x-axis [6]), and c is the speed of sound. We
aim to estimate the number P of active sources, along with
the corresponding DOAs, θg .

III. CONFIDENCE MEASURES AND LOCALIZATION

A. Definitions and assumptions

In this paper we focus our attention on the estimation
of the number of sound sources, impinging on an array of
sensors. This comes as a natural extension to our previous
work [6], where the number of sources was assumed as known
a priori and we recall it here for the sake of clarity. We
locate “constant-time analysis zones” in the time–frequency
(TF) representation of the incoming data. Each of them is a
set of adjacent TF points, denoted as (Ω). We assume that for
each source there exists (at least) one zone (Ω), which we call
“single source analysis zone”, where that source is dominant
over the others. For any pair of signals (xi, xj), we define the
cross-correlation over analysis zones of the moduli of their TF
transform as

R′i,j(Ω) =
∑
ω∈Ω

|Xi(ω) ·Xj(ω)∗| , (3)

where Xi(ω) is the TF transform of xi(t) and ∗ stands for the
complex conjugate. The associated correlation coefficient is

r′i,j(Ω) = R′i,j(Ω)/
√
R′i,i(Ω) ·R′j,j(Ω). (4)

B. Single-source confidence measures

We detect as single-source analysis zones all constant -time
analysis zones that satisfy the following inequality:

r′(Ω) ≥ 1− ε, (5)

where r′(Ω) is the average correlation coefficient between
adjacent pairs of observations [8] and ε is a small user-defined
threshold.

C. DOA estimation in a single-source zone

After the single-source analysis zones detection stage, we
apply a modified version [6] of the algorithm in [12], in order
to estimate the DOA of a speaker in each detected zone.

We consider the circular array geometry introduced in Sec-
tion II. We denote as ωmax

i the frequency where the magnitude
of the cross-power spectrum, defined as Ri,i+1(ω) = Xi(ω) ·
Xi+1(ω)∗, over the frequency range of a zone (Ω), reaches its
maximum [6].

Using (2), with 1 ≤ i ≤ M and 0 ≤ φ < 2π, we evaluate
the Phase Rotation Factors [12],

G
(ωmax

i )
mi→m1(φ) , e−jω

max
i τmi→m1

(φ), (6)

where τmi→m1(φ) , τm1m2(φ)−τmimi+1(φ) is the difference
in the relative delay between the signals received at pairs
{m1m2} and {mimi+1}. We estimate the Circular Integrated
Cross Spectrum, defined in [12] as

CICS(φ) ,
M∑
i=1

G
(ωmax

i )
mi→m1(φ)∠Ri,i+1(ωmax

i ). (7)

The estimated DOA of a speaker in the considered zone is
then given by:

θ̂ = arg max
0≤φ<2π

CICS(φ). (8)

D. Block-based decision

Since we have estimated all the local DOAs in the above
single-source zones (Sections III-B and III-C), we form the
histogram from the set of estimations in a block of B
consecutive frames and we smooth it by applying an average
filter with a window of length hN [6]. This way we estimate
the probability density function of the estimations, P(v),
0 ≤ v < 2π.

We then proceed with the estimation of the number of
sources, P . Given this estimation, P̂ , we estimate the final
DOAs, as:

θ̂i =
hNN

∑lh
j=ll

j · P(j)∑lh
j=ll

P(j)
,

{
ll = k − hN/2
lh = k + hN/2

}
(9)

where i = 1, · · · , P̂ . The index k is one of the P̂ highest local
peaks of P(v) and there is a 1-to-1 correspondence between i
and k.

IV. COUNTING THE SOURCES

Most of the approaches on the Source Counting problem are
based on information theoretic criteria, with most dominant
the Minimum Description Length (MDL) [9]. They depend
on ordered eigenvalues of the estimated covariance matrix
of the observation vectors, in the same spirit as it has been
proposed in the MUSIC algorithm framework [13]. These
methods are computationally intensive and have difficulty
robustly estimating the number of active sources. Further to
these drawbacks, in our considered problem the estimation of
the number of sources is different as we are working with a
histogram of the DOA estimations. Thus we investigate three
different methods to estimate the number of sources: a Peak
Search approach, a Linear Predictive Coding (LPC) approach
and a Matching Pursuit approach under the constraint that the
maximum number of sources cannot exceed a user defined
upper threshold PMAX.

A. Peak Search

In order to estimate the number of sources we perform a
peak search of the Block-histogram in the following manner.
a. Since there is always at least one active source in a

block of estimates, we set is = 1, where is corresponds
to a counter of the peaks assigned to sources so far.
We also set uis = u1 = arg max0≤φ<2π P(u), i.e. the



histogram bin which corresponds to the highest peak of
the smoothed histogram. Finally, we set the threshold
zis+1 = max{P(uis)/2, zstatic}, where zstatic is a user-
defined static threshold.

b. We locate the next highest peak in the smoothed his-
togram, P(uis+1). If P(uis+1) ≥ zis+1 and uis+1 6∈
[ujs − δ, ujs + δ], ∀ujs with js < (is+1) then is = is+1,
zis+1 = max{P(uis)/2, zstatic}

c. We stop when a peak in the histogram fails to satisfy the
threshold zis+1 or if the upper threshold PMAX is reached.
The estimated number of sources is P̂ = is.

We note that peak-search approaches on histograms of esti-
mates have been proposed in literature [11]. Here, we give
another perspective on these approaches by processing a
smoothed histogram and by using a non-static peak threshold.

B. Linear Predictive Coding

Linear Predictive Coding (LPC) coefficients are widely used
to provide an all-pole smoothed spectral envelope of speech
and audio signals. We use this to more clearly point out the
peaks of the smoothed histogram and to suppress any noisy
areas. We represent the envelope of the histogram with its
LPC-smoothed counterpart from which the total number of
peaks is chosen as our estimate of P̂ .

C. Matching Pursuit

The third method we propose to perform the source counting
is an algorithm inspired by Matching Pursuit. The idea is
to pick the peaks of the smoothed histogram by correlation,
and then remove the contribution of each source. We choose
a source atom to be approximated by a smooth pulse such
as that of the Blackman window. Let q be a length-Q row
vector containing a length-Q Blackman window, then let u be
a length-L row vector whose first Q values are populated with
q and then padded with L − Q zeros. Now let u(m) denote
a version of u that has been “circularly” shifted to the right
by m elements, the circular shift means that the elements at
either end wrap around, and a negative value of m implies a
circular shift to the left.

Now choose Q = 2Q0 + 1 where Q0 is a positive integer.
The maximum value of q (or equivalently u) will occur at
(Q0 + 1)-th position. Now define r = u(−Q0). The maximum
value of the length-L row vector r occurs at its first element.
Let the elements of r be denoted ri, and the energy in one
row be given by Er =

∑
r2
i . Now form the matrix R, which

consists of circularly shifted versions of r. Specifically the m-
th row of R is given by r(m−1). Finally, let γ be a length-PMAX
vector whose elements γi are some predetermined thresholds,
representing the relative energy of the i-th source.

Given y, the smoothed histogram in the current frame, our
algorithm proceeds as follows:

a. Set the initial value y1 = y, and the loop index j = 1
b. Form the product b = Ryj
c. Let the elements of b be given by bi, find i∗ = arg maxi bi

d. Remove the contribution of this source as

yj+1 = yj − (r(i∗−1))T
bi∗

Er

e. Calculate the contribution of this source as

δj =
∑
i

yj,i − yj+1,i

y1,i

where yj,i is the i-th element of yj .
f. If δj > γj increment j, else go to step h.
g. If j ≤ PMAX go to step b.
h. The number of sources in the current frame is equal to
j − 1.
It should be noted that this method was developed with

the goal of being computationally-efficient so that the source
counting could be done in real-time. In particular, the matrix R
was found to be an efficient way of dealing with the inherent
circularity of the histogram due to its measuring direction
modulo 360◦. It should be clear that R is a circulant matrix
and will contain L−Q zeros on each row, and both of which
may be exploited to provide a reduced computational load.

V. RESULTS AND DISCUSSION

In order to investigate the performance of our methods, we
conducted simulations of 4 audio sources in a reverberant
room. We used the fast image-source method (ISM) [14]
to simulate a room of 6 × 4 × 3 meters. The boundaries
were assumed to be plane reflective walls, characterized by
uniform reflection coefficient rcoef = 0.5, and reverberation
time T60 = 0.25s. A circular array with 8 omnidirectional
microphones and a radius of 5cm was placed in the centre
of the room, coinciding with the origin of the x and y-axis.
The four point sources were speech signals located 1.5m from
the array, sampled at 44.1kHz, processed in frames of 2048
samples, with 50% overlapping in time. The FFT size was
2048 and the width of the TF analysis zones Ω was 344Hz
with 50% overlapping in frequency, and with fmax = 4kHz
as the highest frequency of interest. The sound velocity was
c = 343 m/s. The single-source confidence measure threshold
was ε = 0.2, histogram bin size was 0.5◦, and hN = 5◦ was
the average filter window length. For the Peak Search method
(PS), zstatic = 0.05

∑360
j=0 P(j) and δ = 20◦, and the LPC order

used was 16. The thresholds for the Matching Pursuit-based
method (MP) were γ = {0.15, 0.14, 0.12, 0.1}. It is important
to note that all these parameters were fixed, and in particular,
independent of the signal-to-noise ratio (SNR).

We tested all three methods with PMAX = 4 and with block
sizes—referred to also as history lengths—equal to 0.25s, 0.5s
and 1s. Fig. 1 shows an example DOA estimation of the four
sources at 10◦, 55◦, 115◦, and 190◦. Note that the estimation
of each source is prolonged for some period of time after
he/she stops talking or respectively is delayed when he/she
starts talking. This is due to the fact that the DOA estimation
at each time instant is based on a block of estimates of length
B seconds (B = 1s in this example). We refer to these periods
as “transition periods”, which we define as the time interval
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Fig. 1. Estimation of DOA of 4 speakers at 10◦, 55◦, 115◦, and 190◦ in a
simulated reverberant environment with SNR=20 dB and a one second history.
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Fig. 2. MAEE of the DOA excluding the transition periods in a simulated
reverberant environment for various history lengths and various SNRs

starting when a new or existing speaker starts or stops talking
and ending B seconds later. In Fig. 2 we show the Mean
Absolute Estimation Error (MAEE) of the four speakers for
various SNR values. It should be noted that each point is an
average of 36 simulations in which each speaker was shifted by
10◦ steps each simulation in order to capture a more accurate
performance all around the array. In Table I, we give success
rates of the source counting (percentage of frames correctly
counting the number of sources) for the three methods under
consideration with various history lengths and differing values
of SNRs. For these results and the estimation of the MAEE,
the transition periods were not taken into account.

There is an obvious performance improvement for both the
DOA estimation and source counting as the history length
increases, as the algorithms have more data to work with in
the histogram. However increasing the history also increases
the latency of the system, in turn decreasing responsiveness.
The results in Fig. 2 and Table I suggest that a history length
of 0.5 s might be a good compromise. The DOA algorithm
runs in 50% of real-time [6], while all three proposed methods
add only 5% to that computational time. The Matching Pursuit
method is clearly the best performing source counting method.

VI. CONCLUSION

In this paper we extended our previous work on real-time
multiple sound source localization using a circular microphone

TABLE I
SOURCE COUNTING SUCCESS RATES EXCLUDING TRANSITION PERIODS

History SNR (dB)
Method Length 0 5 10 15 20

PS 0.25s 33.5% 43.9% 58.3% 69.3% 76.0%
LPC 0.25s 25.5% 39.3% 55.2% 61.8% 63.5%
MP 0.25s 44.1% 60.2% 77.6% 85.0% 88.4%
PS 0.5s 47.8% 62.1% 75.5% 82.8% 86.0%
LPC 0.5s 35.3% 58.0% 72.8% 74.6% 74.4%
MP 0.5s 61.2% 81.7% 94.2% 96.0% 96.6%
PS 1s 51.5% 68.9% 81.6% 88.3% 90.6%
LPC 1s 46.3% 78.5% 83.7% 81.7% 79.4%
MP 1s 77.4% 97.5% 100.0% 100.0% 100.0%

array [6], by proposing three different methods for counting
the number of sources. All these methods identify prominent
peaks in the smoothed histogram from the DOA estimation,
and are simple and efficient to implement. The methods were
tested in a simulated reverberant environment, with various
additive noise conditions. In particular, the matching pursuit
based method was found to perform very accurately in most
conditions, requiring only 5% of the available processing time.
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