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ABSTRACT

We propose a novel real-time adaptative localization approach for
multiple sources using a circular array, in order to suppress the lo-
calization ambiguities faced with linear arrays, and assuming a weak
sound source sparsity which is derived from blind source separation
methods. Our proposed method performs very well both in simula-
tions and in real conditions at 50% real-time.

Index Terms— Array signal processing, direction of arrival es-
timation, multiple source localization

1. INTRODUCTION

Audio source localization using an array of sensors is a rich topic
which has interested many signal processing researchers for more
than 30 years [1]. Applications e.g. include speaker location discov-
ering in a teleconference, event detection and tracking, robot move-
ment in an unknown environment, etc. Among all the approaches
proposed in the literature e.g. beamforming [2], using grids of pos-
sible locations [3] or a probabilistic framework [4], numerous ones
are based on Time Difference Of Arrival (TDOA) [5] at different
microphone pairs for estimating the Direction of Arrival (DOA).
Many of them use the Generalized Cross-Correlation PHAse Trans-
form (GCC-PHAT), which has significant limitations in the case of
multiple sources and/or reverberant environments. Such limitations
have been partially solved by considering ratios of the GCC-PHAT
peaks [6] and by using the redundant information contained in more
than two microphones [7]. Further work proposed to change the ge-
ometry of the array of sensors in order to suppress some localization
ambiguities due to linear arrays [8, 9].

As an alternative to the above classical approaches, Sparse Com-
ponent Analysis (SCA) methods [10] may be seen as natural exten-
sions of multiple sensor single source localization methods to mul-
tiple source localization. They basically assume that sources are
sparse in an analysis domain obtained after a sparsifying transform
(usually a short-time Fourier transform) and that, as a consequence,
one source is dominant over the others in some time-frequency win-
dows or “zones”. Using this assumption, the multiple source prop-
agation estimation problem may be rewritten as a single-source one
in these windows or zones and the above methods estimate a mix-
ing/propagation matrix (i.e containing for each source columns of
gains due to attenuation during the propagation to the sensors, and of
TDOAs), and then try to recover the sources. Their main advantage
is their flexibility to deal with both (over-)determined and underde-
termined configurations, i.e. the cases when the number of sources
is resp. (strictly) lower or higher than the number of sensors. By

∗This work is funded by the Marie Curie IAPP “AVID MODE” grant
within the 7th European Commission Framework Programme.

only considering the estimation of this mixing matrix, and by taking
advantage of the known geometry of microphones in the array, it is
then possible to localize the sources, as e.g. proposed in [11].

SCA approaches are mainly divided in two families. Most of
them require a strong source sparsity assumption named W-Disjoint
Orthogonality (WDO) [12]: in each time-frequency window, at most
one source is active. From a signal processing point of view, WDO
is a nice assumption which is almost fulfilled by speech signals in
anechoic environments. However, this assumption does not hold
in reverberant conditions [13] and/or when source signals are mu-
sical. Moreover, SCA methods based on this assumption are usually
derived from DUET [12] which is unable to estimate “large” time
shifts. On the contrary, other methods assume that the sources may
overlap in the time-frequency domain, except in some tiny “time-
frequency analysis zones” where only one of them is active (see
e.g. [14] and the references within). They particularly use “constant-
time single-source analysis zones”, i.e. a set of frequency-adjacent
time-frequency windows in order to estimate TDOAs, and are able
to accurately estimate a large range of time shifts (typically up to
200 samples in [14]).

Unfortunately, most of the SCA approaches are off-line meth-
ods, except a few ones [15,16]. The work in [15] assumes the WDO
assumption and is thus not well-suited to reverberant configurations.
Such an approach has then been considered for a localization prob-
lem in [11]. Furthermore, [16] looks for single-source zones, but
does not estimate the TDOAs and has thus never been considered in
a localization problem. In this paper, we propose a new adaptative
multiple-source localization approach, using the relaxed sparsity as-
sumption of [14, 16], but which additionally estimates DOAs. We
thus assume a much weaker and much more realistic sparsity as-
sumption than [11, 12, 15]. Moreover, and contrary to [14], we take
into consideration the known geometry of the microphone array in
order to perform a better estimation of DOAs. In particular, we use a
circular array of sensors which reduces the location indeterminacies
inherent to linear arrays [8].

The remainder of the paper then reads as follows. We describe
the considered localization problem in Section 2. We then introduce
our proposed method in Section 3. Section 4 provides an experimen-
tal validation of the approach while we conclude and discuss future
directions of the incoming work in Section 5.

2. PROBLEM STATEMENT

For an equispaced circular array of M microphones, the signal re-
ceived at each microphone mi is

xi(t) =
P∑

g=1

aigsg (t− ti(θg)) + ni(t), i = 1, · · · ,M (1)
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Fig. 1. Circular sensor array configuration.

where P is the known number of sources sg , assumed to be far-field,
aig and ti(θg) are respectively the attenuation factor and the delay
from source sg to microphone mi, θg is the DOA of the source sg
observed with respect to the x-axis (Fig.1), and ni(t) is the noise at
mi. For one given source, the relative delay between signals received
at adjacent microphones, hereafter referred to as microphone pair
{mimi+1}, with the last pair being {mMm1}, is given by

τmimi+1(θg) � ti+1(θg)− ti(θg) = l sin(A− θg + (i− 1)α)/c,
(2)

where l and α are resp. the distance and angle between {mimi+1},
A is the obtuse angle formed by the chord m1m2 and the x-axis,
and c is the speed of sound. We aim to estimate the DOAs θg .

3. PROPOSED METHOD

3.1. Definitions and assumptions

Before describing our proposed method, we first introduce the def-
initions and assumptions of the proposed method. We follow the
framework of [14] that we recall hereafter for the sake of clarity.
We consider a short-time Fourier transform as a sparsifying trans-
form. In practice, we partition the incoming data in overlapping
time frames on which we compute a Fourier transform, hence pro-
viding a time-frequency (TF) representation of observations. We
then define a “constant-time analysis zone”, (t,Ω), as a series of
frequency-adjacent TF points (t, ω) . In the remainder of the paper,
we ommit t in the (t,Ω) for simplicity. We assume the existence,
for each source, of (at least) one constant-time analysis zone, said to
be “single-source”, where one source is “isolated”, i.e. it is domi-
nant over the others. Note that this assumption is much weaker than
WDO since sources can overlap in the TF domain except in these
few single-source analysis zones. We further assume that when sev-
eral sources are active in the same analysis zone, they should vary so
that the moduli of at least two observations are linearly dependent.
This last assumption, satisfied in practice by audio signals, allows
us to process correlated sources, contrary to classical statistic-based
DOA methods. For any pair of signals (xi, xj), we respectively de-
fine the cross-correlation over analysis zones of their TF transform
and of their moduli as

Ri,j(Ω) =
∑
ω∈Ω

Xi(ω)·Xj(ω)
∗, R′

i,j(Ω) =
∑
ω∈Ω

|Xi(ω) ·Xj(ω)| ,
(3)

where Xi(ω) is the TF transform of xi(t) and ∗ stands for the com-
plex conjugate. We then derive their associated correlation coeffi-

cient

r′i,j(Ω) =
R′

i,j(Ω)√
R′

i,i(Ω) ·R′
j,j(Ω)

. (4)

We now introduce the proposed method whose core stages are:

1. The application of a joint-sparsifying transform to the obser-
vations, using the above TF transform.

2. The single-source analysis zones detection (see Section 3.2).

3. The DOA estimation (see Sections 3.3 and 3.4).

3.2. Single-source confidence measures

In this section, we describe how to find single-source analysis zones.
Our approach is based on the following theorem [14]:

Theorem 1 A necessary and sufficient condition for a source sk to
be isolated in an analysis zone (Ω) is

r′i,j(Ω) = 1 ∀i, j ∈ {1, . . . ,M}. (5)

In practice, we do not consider the correlation between all the pairs
(i, j) of observations, but the average correlation between pairs
(i, i + 1) of observations [14], denoted r′(Ω) hereafter. Moreover,
in practice, we consider that an analysis zone is single-source iff

r′(Ω) ≥ 1− ε, (6)

where ε is a small user-defined threshold.

3.3. DOA estimation in a single-source zone

At this point, by considering all the single-source analysis zones
satisfying (6), we re-examine the single source multi-sensor DOA
problem in these zones, hence the interest in such sparsity assump-
tion. In order to estimate the DOA of a speaker in a single-source
constant-time analysis zone, we propose a modified version of the al-
gorithm in [8], which is designed exclusively for circular arrays. We
selected this algorithm because of its anti-reverberation characteris-
tics, in conjunction with the robust behaviour in noisy environments
and the computational efficiency.

We consider the circular array geometry (Fig.1) introduced in
Section 2. Since the estimation of the DOA takes place in a constant-
time analysis zone, the phase of the Cross-Power Spectrum of a mi-
crophone pair is evaluated over the frequency range of the specific

zone as ∠Ri,i+1(Ω) =
Ri,i+1(Ω)

|Ri,i+1(Ω)| where Ri,i+1(Ω) is defined in

(3). We denote as ωmax
i the frequency where the magnitude of the

cross-power spectrum reaches its maximum, given by,

ωmax
i = argmax

Ω
|Ri,i+1(ω)| . (7)

At this point, in [8], the harmonics selection module selects only
the indices of the peaks of the Cross Power Spectrum for the local-
ization. Instead, since we aim at a real-time application, we use only
the ωmax

i frequency, which corresponds to the strongest component
of the cross-power spectrum in a single-source zone. Experimentally
this introduced inaccuracy was found to result in acceptable perfor-
mance.

Using (2) and (7), with 1 ≤ i ≤ M and 0 ≤ φ < 2π, we
evaluate the Phase Rotation Factors [8],

G
(ωmax

i )
mi→m1(φ) � e−jωmax

i τmi→m1 (φ), (8)
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where τmi→m1(φ) � τm1m2(φ) − τmimi+1(φ) is the difference
in the relative delay between the signals received at pairs {m1m2}
and {mimi+1}. We proceed with the estimation of the Circular
Integrated Cross Spectrum, defined in [8] as

CICS(φ) �
M∑
i=1

G
(ωmax

i )
mi→m1(φ)∠Ri,i+1(ω

max
i ). (9)

The DOA of the speaker in the specific single source zone is, then,
obtained as,

θ̂ = arg max
0≤φ<2π

CICS(φ). (10)

3.4. Improved block-based decision

In the above analysis, several single-source zones may lead to the
same DOA, as the isolated source is the same in each of them. Deriv-
ing the DOA for each sound source involves clustering the estimated
DOAs, which can be done by finding peaks in their histogram for
a particular time segment. This motivated us to apply an approach
based on Parzen windows for obtaining a density function from the
estimated DOAs [17]. For every time frame of incoming data, we
evaluate the confidence measures (5) for all analysis zones and we
discard those zones that do not satisfy (6). In each single source zone
we apply the algorithm described in Section 3.3 and we get an esti-
mate of the DOA at the specific single-source analysis zone. Then,
from the set of estimations in a block of B consecutive frames, we
estimate the density function of the estimations, by applying a rect-
angular window over the estimations of this block.

If we denote as v the independent variable, the probability den-
sity function of v according to [17] is:

P(v) =
1

N

N∑
i=1

1

hN
w

(
v − vi
hN

)
, 0 ≤ v < 2π (11)

where N is the total number of estimates in a block, hN is the length
of the window and w(.) is the rectangular window. The DOA of each
of the P sound sources is estimated as

θ̂i =
hNN

∑lh
j=ll

j · P(j)∑lh
j=ll

P(j)
,

{
ll = k − hN/2

lh = k + hN/2

}
(12)

where i = 1, · · · , P . The index k is one of the P highest local peaks
of P(v) and there is a 1 to 1 correspondence between i and k. The
P highest local peaks are selected under the constraint that they are
“distant-enough”, i.e. separated by a user-defined threshold δ. The
block of estimates slides with each new time frame.

4. RESULTS

In order to evaluate the proposed algorithm, we performed speech
localization simulations and real-time experiments. We denote Fs

the sampling frequency, fmax the highest frequency of interest and q
the radius of the circular array. The aforementioned parameters take
values: Fs = 44.1 kHz, fmax = 4 kHz, and q = 0.05 m, which
guaranties the absence of spatial aliasing in a circular array [9]. The
number of microphones was M = 8, the single-source confidence
measure threshold was ε = 0.2, the Parzen window length was
hN = 5◦, the angular threshold was δ = 10◦, the frame size was
equal to 2048 samples, whereas the Block size B was equal to 44100
samples. The FFT size was 2048 and the width of the TF analysis
zones Ω was 344 Hz. The overlapping, both in time and frequency
domain, was 50%. The sound velocity was c = 343 m/s.
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Fig. 2. Mean Absolute Estimation Error (MAEE) of the DOA in
light reverberant simulated environment for various SNRs of white
additive noise

In order to simulate a real reverberant room, we used the fast
image-source method (ISM) described in [18]. The length, width
and height of the room were respectively set to 6 m, 4 m, and 3 m.
The boundaries were assumed plane reflective walls, characterized
by the uniform reflection coefficient, rcoef = 0.5 and the reverber-
ation time was set to T60 = 0.25 s. The circular array was placed
in the centre of the room, which coincides with the origin of the x
and y-axis. The coordinates of microphone m1 were (0.05, 0, 1)
(as in Fig. 1) and the distance between adjacent microphones was
l = 38 mm. The microphones are assumed to be ideal point re-
ceivers with omnidirectional directivity patterns. The sound sources
are omnidirectional point transmitters and they are located 1.5 m
away from the centre of the array. In Fig. 2, we present the Mean
Absolute Estimation Error (MAEE) in white Gaussian noise condi-
tions for SNR={5, 10, 15, 20} dB. The two sources are separated by
45◦. The MAEE is evaluated from 0◦ to 360◦ in 10◦ steps for all
cases.

The real-time experiments were conducted in a typical office
room with approximately the same dimensions and placement of the
microphone array as in the simulations. The signal to noise ratio in
the room was, on average, 15 dB, mainly because of the presence
of A/C units. The algorithm was implemented in software executed
on a standard PC (Intel 2.40 GHz Core 2 CPU, 2GB RAM). We
used Shure SM93 microphones (omnidirectional) with a TASCAM
US2000 8-channel USB soundcard. The execution time is 50 % real
time (i.e. 50% of the available processing time). In the following
results, some percentage of the estimated error can be attributed to
the inaccuracy of the source positions. Fig. 3(a) shows the DOA
estimation of two sources, where Speaker 2 is sitting at distance 1.5
m from the centre of the array and at 15◦, while Speaker 1 is follow-
ing a circular motion from 75◦ to 345◦ with an almost steady speed
and also at distance 1.5 m from the array. The performance achieved
in this experiment shows the moving source is accurately traced. In
Fig. 3(b) we show the estimation of DOA for a 3 sources scenario.
Two male speakers are sitting at 240◦ and 0◦ while a female speaker
is at 160◦. The maximum deviation from the real DOA is 4.5◦ for
Speaker 1, 1.4◦ for Speaker 2 and 3.1◦ for Speaker 3. Even if the
presence of three sources reduces the number of single-source zones,
the performance achieved here is close to the one presented in the
simulations with 2 sources. Due to lower spectral overlap, the best
accuracy is obtained with the female speaker. The MAEE error of 2
static speakers, spaced by 45◦, for pair positioning from 0◦ to 360◦
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Fig. 3. Estimations in real environment: (a) DOA estimation of 2 sources. Speaker 1 is moving from 75◦ to 345◦, while Speaker 2 is static at
15◦. (b) Estimation of DOA of 3 static sources at {240, 160, 0}◦. (c)Mean Absolute Estimation Error (MAEE) of the DOA of 2 male static
sources versus the true DOA. The sources are separated by 45◦. The MAEE is evaluated from 0◦ to 360◦ in 10◦ steps.

in 10◦ steps around the array is shown in Fig. 3(c). The maximum
MAEE is 3.4◦ for Speaker 1 and 4.0◦ for Speaker 2.

5. CONCLUSION AND FUTURE WORK

In this paper, we proposed a novel real-time adaptative source lo-
calization approach using a circular array, in order to suppress the
localization ambiguities faced with linear arrays, and assuming a
weak sparsity assumption which is derived from blind source sep-
aration methods. To the best of our knowledge, such a configuration
has never been considered before. Our proposed method performs
very well both in simulations and in real conditions at 50% of real-
time. In future work, we will characterize the performance of the
proposed method in various scenarios involving more sources with
closer DOAs. We also plan to investigate the real-time estimation of
the number of sources, which is here assumed to be known.
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