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Abstrat. We propose two time-frequeny (TF) blind soure separa-

tion (BSS) methods suited to attenuated and delayed (AD) mixtures.

They onsist in identifying the olumns of the (�ltered permuted) mix-

ing matrix in Constant-Time TF zones where they detet that a single

soure ours, using TIme-Frequeny Ratios Of Mixtures (hene their

name AD-TIFROM-CT). We thus identify olumns of sale oeÆients

and time shifts. Unlike various previously reported TF-BSS approahes,

these methods set very limited onstraints on the soure sparsity and

overlap. They are espeially suited to non-stationary soures.

1 Introdution

Blind soure separation (BSS) onsists in estimating a set of N unknown soures

from a set of P observations resulting from mixtures of these soures through un-

known propagation hannels. Most of the approahes that have been developed

to this end are based on Independent Component Analysis [1℄. More reently,

several methods based on ratios of time-frequeny (TF) transforms of the ob-

served signals have been reported. Some of these methods, i.e. DUET and its

modi�ed versions, are based on an anehoi mixing model, involving attenua-

tions and delays (AD) (this is not the general onvolutive model). However, they

require the soures to have no overlap in the TF domain [2℄, whih is quite re-

stritive. On the ontrary, only slight di�erenes in the TF representations of

the soures are requested by our Linear Instantaneous (LI) TIFROM method [3℄.

We here propose two novel TF-BSS methods, inspired by this LI-TIFROM ap-

proah, but suited to more general mixtures involving time shifts. We thus avoid

the restrition

1

of the DUET method onerning the sparsity of the soures in

the TF domain, while addressing the same lass of mixtures.

2 Problem statement

In this paper, we assume that N unknown soure signals s

j

(n) are transferred

through AD hannels and added, thus providing a set of N mixed observed

1

Note however that DUET also applies to underdetermined mixtures, whih is not,

at this stage, the ase of the methods that we propose in this paper.



signals x
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where a
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are real-valued stritly positive onstant sale oeÆients and n

ij

are

integer-valued time shifts. We here handle the sale/�lter indeterminaies in-

herent in the BSS problem by extending to AD mixtures an approah that we

introdued in another type of LI-BSS method, i.e. LI-TIFCORR [4℄. This ap-

proah may be de�ned as follows. We onsider an arbitrary permutation funtion

�(:), applied to the indies j of the soure signals, whih yields the permuted

soure signals s

�(j)

(n). We then introdue saled and time-shifted versions of

the latter signals, equal to their ontributions in the �rst mixed signal, i.e.
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The mixing equation (1) may then be rewritten as
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The Fourier transform of Eq. (3) reads
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This yields in matrix form
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0

(!) (6)
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ij
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i; j = 1 : : :N: (7)

In this paper, we aim at introduing methods for estimating B(!).

3 Proposed basi TIFROM method for AD mixtures

3.1 Time-frequeny tool and assumptions

We reently proposed [3℄ a LI-BSS method based on TIme-Frequeny Ratios Of

Mixtures, that we therefore alled "LI-TIFROM". Starting from this method,

we here develop extensions intended for AD mixtures. These approahes are



alled AD-TIFROM-CT, sine they are shown below to only use "Constant-Time

analysis zones". The TF transform of the signals onsidered in these approahes

is the Short-Time Fourier Transform (STFT) de�ned as:

U(n; !) =

+1

X

n

0

=�1

u(n

0

)h(n

0

� n)e

�j!n

0

(8)

where h(n

0

� n) is a shifted windowing funtion, entered on time n. U(n; !) is

the ontribution of the signal u(n) in the TF window orresponding to the short

time window entered on n and to the angular frequeny !.

The AD-TIFROM-CT approah uses the following de�nitions and assumptions.

De�nition 1 A soure is said to "our alone" in a TF area (whih is omposed of

several adjaent above-de�ned TF windows) if only this soure has a TF trans-

form whih is not equal to zero everywhere in this TF area.

De�nition 2 A soure is said to be "visible" in the TF domain if there exist at

least one TF area where it ours alone.

Assumption 1 Eah soure is visible in the TF domain.

Note that this is a very limited sparsity onstraint !

Assumption 2 There exist no TF areas where the TF transforms of all soures

are equal to zero everywhere

2

.

Assumption 3 When several soures our in a given set of adjaent TF win-

dows, they should vary so that at least one of the moduli of ratios of STFTs

of observations, jX

i

(n; !)=X

1

(n; !)j, with i = 2 : : : N , does not take the same

value in all these windows . Espeially, i) at least one of the soures must take

signi�antly di�erent TF values in these windows and ii) the soures should not

vary proportionally.

3.2 Overall struture of the basi AD-TIFROM-CT method

The AD-TIFROM-CT method aims at estimating the mixing matrix B(!) de-

�ned in Eq. (7), i.e. the parameters b

im

and �

im

, with i = 2 : : :N andm = 1 : : :N

(i = 1 yields b

ij

= 1 and �

ij

= 0: see Eq. (4)). The basi version of this method

is omposed of a pre-proessing stage and 3 main stages:

1. The pre-proessing stage onsists in deriving the STFTs X

i

(n; !) of the

mixed signals, aording to Eq. (8).

2. The detetion stage aims at �nding "onstant-time TF analysis zones" where

a soure ours alone, using the method introdued in Setion 3.3.

3. The identi�ation stage aims at estimating the olumns of B(!) in the above

single-soure analysis zones, using the method proposed in Setion 3.4.

4. In the ombination stage, we eventually derive the output signals. They may

be obtained in the frequeny domain by omputing Y (!) = B

�1

(!)X(!)

where Y (!) = [Y

1

(!) � � �Y

N

(!)℄

T

is the vetor of Fourier transforms of the

output signals. The time-domain versions of these signals are then obtained

by applying an inverse Fourier transform to Y (!).

2

This assumption is only made for the sake of simpliity: it may be removed in

pratie, thanks to the noise ontained by real reordings, as explained in [3℄.



3.3 Detetion of single-soure onstant-time TF analysis zones

As stated above, the BSS method that we here introdue �rst inludes a de-

tetion stage for �nding single-soure TF zones. The frequeny-domain mixture

equations orresponding to Eq. (1) read

X
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e
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S

j

(!) i = 1 : : :N: (9)

This relationship between the observations and soures remains almost exat

when expressed in the TF domain if the time shifts n

ij

are small enough as

ompared to the temporal width of the windowing funtion h(:) used in the

STFT transform. We here assume that this ondition is met and thus that the

STFTs of the observations an be expressed wrt. the STFTs of the soures as

X
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N

X
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Let us onsider the ratio of STFTs of mixtures
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If a soure S

k

(n; !) ours alone in the onsidered TF window (n

p
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l
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with b

im

and �

im

de�ned by Eq. (4) and k = �(m). Sine we assumed all mix-

ing oeÆients a

ik

to be real and positive, all resulting sale oeÆients b

im

are

also real and positive. The modulus of the parameter value �

i

(n

p

; !

l

) provided

in Eq. (12) is therefore equal to b

im

. If only soure S

k

(n; !) ours in several

frequeny-adjaent windows (n

p

; !

l

), then j�

i

(n

p

; !

l

)j is onstant over these ad-

jaent windows. On the ontrary, it takes di�erent values over these windows

for at least one index i if several soures are present, due to Assumption 3.

To exploit this phenomenon, we ompute the sample variane of j�

i

(n; !)j on

"onstant-time analysis zones" that we de�ne as series of M frequeny windows

orresponding to adjaent !

l

, applying this approah independently to eah time

index n

p

. This set of frequeny points !

l

is denoted 
 hereafter and the orre-

sponding TF zone is therefore denoted (n

p

; 
). We respetively de�ne the sample

mean and variane of j�

i

(n

p

; !

l

)j on (n

p

; 
) as

j�

i

j(n
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; 
) =
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M

M
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: (14)



We �rst ompute these parameters independently for eah i, with i = 2 : : :N .

We then derive the mean over i of these varianes var [j�

i

j℄ (n

p

; 
), i.e.

MV AR [j�j℄ (n
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; 
) =

1

N � 1

N

X
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): (15)

Similarly, we ompute the inverse ratios and their means and varianes on eah

onsidered analysis zone, i.e.
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The mean over i of these varianes var [j�

i

j℄ (n
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) then reads
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This mean MVAR [j�j℄ (n

p

; 
) has lower or higher values than the above mean

MV AR [j�j℄ (n

p

; 
), depending on mixing sale oeÆients. The best single-

soure TF zones are those wheremin fMV AR [j�j℄ (n

p

; 
);MV AR [j�j℄ (n

p

; 
)g

takes the lowest values.

3.4 Identi�ation stage

Thanks to expression (12) of the parameters �

i

(n; !) in single-soure analysis

zones, a natural idea for estimating the time shifts �

im

onsists in taking ad-

vantage of the phase of �

i

(n; !). We onsider independently eah time position

n

p

assoiated to TF windows and for eah suh position, we unwrap the phase

of �

i

(n

p

; !) over all assoiated frequeny-adjaent TF points. If we assume that

S

k

(n; !) ours alone in an analysis zone (n

p

; 
) and we onsider the unwraped

phase �

i

(n

p

; !

l

) of �

i

(n

p

; !

l

) in this zone, due to Eq. (12) we have
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�
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= �
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) + 2q
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(n
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where q

im

(n

p

) is an unknown integer. Eq (20) shows that the urve assoiated to

the variations of the phase �

i

(n

p

; !

l

) wrt. !

l

in a single-soure zone (n

p

; 
) is a

line and that its slope, equal to ��

im

, does not depend on the value of q

im

(n

p

).

This slope therefore allows us to identify �

im

, with no phase indeterminay. Our

method for identifying the set of parameters �

im

assoiated to a olumn of B(!)

therefore operates as follows. In the seleted onstant-time single-soure analysis



zone, for eah observed signal with index i, we onsider theM points whih have

two oordinates, resp. de�ned as the frequenies !

l

and the orresponding values

�

i

(n

p

; !

l

) of the unwraped phase of the identi�ation parameter. We determine

the least-mean square regression line assoiated to these points. The estimate of

the parameter �

im

is then set to the integer whih is the losest to the opposite

of the slope of this regression line.

The overall identi�ation stage onsists in suessively onsidering the analysis

zones ordered aording to inreasing values of

min fMVAR [j�j℄ (n

p

; 
);MV AR [j�j℄ (n

p

; 
)g. For eah suh zone, the esti-

mates of b

im

assoiated to a olumn of B(!) are set to the values of j�

i

j(n

p

; 
)

or 1=j�

i

j(n

p

; 
), depending whether respetively the parameter MVAR [j�j℄ or

MV AR [j�j℄ takes the lowest value in this zone. A new olumn of b

im

is kept

if its distane wrt. eah previously found olumn of b

im

is above a user-de�ned

threshold �

1

. If a olumn of b

im

is identi�ed and kept, the orresponding olumn

of �

im

is simultaneously identi�ed, by using regression lines in the same analysis

zone as explained above. The identi�ation proedure ends when the number of

olumns of B(!) thus kept beomes equal to the spei�ed number N of soures

to be separated.

4 Proposed improved TIFROM method for AD mixtures

For N > 2 or when the time shifts �

im

are non-negligible wrt. to the length of

STFT windows in the ase N = 2, the above basi method turned out to yield

false results in a signi�ant number of experimental tests: on the one hand, we

obtained olumns of sale oeÆients whih did not orrespond to atual olumns

of B(!). On the other hand, we only ahieved a oarse identi�ation of the asso-

iated time shifts. Both problems an be solved thanks to lustering tehniques.

We now detail suh an approah. In this approah, we form lusters of "points"

where eah point onsists of a tentative olumn of parameters b

im

. To this end,

we �rst ompute the parameters MV AR [j�j℄ (n

p

; 
) and MV AR [j�j℄ (n

p

; 
)

for all analysis zones and we then only onsider the zones whih are suh that

min fMV AR [j�j℄ (n

p

; 
);MV AR [j�j℄ (n

p

; 
)g � �

2

; (21)

where �

2

is a small positive user-de�ned threshold. We thus only keep single-

soure zones, whih orrespond to the beginning of the ordered list reated in

the detetion stage. We suessively onsider eah of the �rst and subsequent

analysis zones in this beginning of the ordered list and we use them in a slightly

di�erent way than in the basi identi�ation proedure that we desribed above.

Here again, for eah onsidered analysis zone, the estimates of the parameters

b

im

are set to the values of j�

i

j(n

p

; 
) or 1=j�

i

j(n

p

; 
), depending on whih of

the parametersMV AR [j�j℄ andMVAR [j�j℄ takes the lowest value in this zone.

The estimated olumn assoiated to the �rst zone in the ordered list is kept as the

�rst point in the �rst luster. Eah subsequently estimated olumn is then used

as follows. We ompute its distanes wrt. all lusters reated up to this stage,



where the distane wrt. a luster is de�ned as the distane wrt. the �rst point

whih was inluded in it. If suh a distane is below a user-de�ned threshold

�

1

, this new olumn is inserted as a new point in the orresponding luster.

Otherwise, this new olumn is kept as the �rst point of a new luster. This

is repeated for all analysis zones whih ful�ll ondition (21). If the threshold

�

1

is low enough, the number of lusters thus reated is at least equal to the

spei�ed number N of soures to be extrated. We then keep the N lusters

whih ontain the highest numbers of points. For eah luster, we eventually

derive a representative, by seleting its point whih orresponds to the lowest

value of min fMV AR [j�j℄ (n

p

; 
);MV AR [j�j℄ (n

p

; 
)g and thus presumably to

the best single-soure zone. This yields the N olumns of estimates of b

im

.

We estimate the parameters �

im

as follows. Independently, for eah of the above

N lusters of olumns of b

im

, we �rst ompute the parameters �

im

in the same

TF zones as these sale oeÆients b

im

. We then derive the histograms of these

parameters �

im

, independently for eah index i. We eventually keep the peak

value in eah histogram as the estimate of �

im

.

5 Experimental results

We now present tests performed with N = 2 soures of English speeh signals

sampled at 20 kHz. These signals onsist of 2.5 s of ontinuous speeh from

di�erent male speakers. The performane ahieved in eah test is measured by the

overall signal-to-interferene-ratio (SIR) Improvement ahieved by this system,

denoted SIRI below, and de�ned as the ratio of the output and input SIRs of

our BSS system. The mixing matrix is set to

A(!) =

�

1 0:9 e

�j!75

0:9 e

�j!75

1

�

: (22)

The input SIR is thus equal to 0.9 dB. The number d of samples per STFT

window is varied geometrially from 1024 to 16384. The number M of windows

per analysis zone is set to 8 when d = 1024. This value of M is then inreased

geometrially with d. Thus, the absolute width of the frequeny bands assoiated

to the frequeny domain 
 of the analysis zones (n

p

; 
) takes the same value

whatever d. This value is 156.25 Hz. In eah test, the temporal overlap between

STFT windows is �xed to 75%. The resulting SIRIs are given in Table 1.

The luster-based method yields better or same results as the basi one. The

mean SIRIs are resp. equal to 11.2 and 24.3 dB with the basi and luster-

based approahes. When d = 16384, one soure is not visible in the TF plane.

Two results illustrate the usefulness of lustering tehniques in our approahes:

when d = 1024, with the basi method, the Frobenius norm of the di�erene

between the atual and theoretial matries of sales oeÆients b

im

is equal to

1.3, while this norm is only equal to 5.4e-2 with the luster-based approah. We

explain this phenomenon as follows: with the basi method, the parameters b

im

were identi�ed in analysis zones whih were seleted beause they were at the

beginning of the ordered list reated in the detetion stage, but these identi�ed



Method STFT window size d

1024 2048 4096 8192 16384

Basi -2.8 14.8 6.2 26.8 invisible

Improved 20.2 14.8 23.9 26.8 invisible

Table 1. Performane (SIRI in dB) for both methods vs STFT window size d.

olumns did not orrespond to the atual (�ltered permuted) mixing matrix,

so that the outputs of our BSS system did not provide well separated soures.

As only a few ourrenes are obtained for eah false olumn value, lustering

tehniques solved this problem. The ase when d = 4096 is interesting too:

we obtain the same matrix of sale oeÆients with both methods (the above-

de�ned Frobenius norm is equal to 3.6e-2). The estimated values of time shifts

are equal to the theoretial ones with the luster-based method, while we have

slight di�erenes with the basi approah: the estimated time shifts are equal

to 74 and -76 while theoretial ones are �75. This learly demonstrates the

usefulness of lustering tehniques.

6 Conlusion and extensions

In this paper, we proposed two TF BSS methods for AD mixtures. They avoid the

restritions of the DUET method, whih needs the soure to be (approximately)

W-disjoint orthogonal. Our methods onsist in �rst �nding the TF zones where

a soure ours alone and then, identifying in these zones the parameters of the

(�ltered permuted) mixing matrix. Thanks to this priniple, these approahes

apply to non-stationary soures, but also to stationary and/or dependent soures

(we ould extend the disussion in [3℄ to AD mixtures), provided there exists at

least a tiny TF zone per soure where this soure ours alone. We experimen-

tally showed the usefulness of lustering tehniques in our methods. Our future

investigations will onsist in a more detailed haraterization of the experimental

performane of the proposed approahes. We will also aim at extending these

methods to general onvolutive mixtures.
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