Correction TP 7: Principe d'induction

Licence 2 MASS semestre 2, 2007/2008

Exercice 1: Ensembles définis inductivement

a- Soit $A' = \{5^n, n \in I\!\!N\}$

– montrons que $A \subseteq A'$.

Soit pour tout $a \in A$ la proposition P(a): " $a \in A'$ ", montrons par **induction** que $\forall a \in A$, P(a) est vraie.

- * base : $1 = 5^0 \in A'$ par définition de A', donc P(1) est vraie.
- * **hérédité**: Supposons qu'il existe $a \in A$ tel que P(a) est vraie. Montrons que P(5a) est vraie. par hypothèse, $a \in A^{'}$ donc $\exists k \in I\!\!N$ tel que $a = 5^k$. Or $5a = 5 \times 5^k = 5^{k+1} \in A^{'}$ par définition de $A^{'}$.

donc P(5a) est vraie.

Ainsi d'après le principe d'induction, on peut conclure que $\forall a \in A$, P(a) est vraie et en déduire que $A \subseteq A'$.

- Montrons que $A^{'} \subseteq A$.

Soit pour tout $k \in \mathbb{N}$ la proposition P(k): " $5^k \in A'$, montrons par **récurrence** que $\forall k \in \mathbb{N}$, P(k) est vraie.

- * base : $5^0 = 1 \in A$, donc P(0) est vraie.
- * hérédité : Supposons qu'il existe $k \in \mathbb{N}$ tel que P(k) est vraie. Montrons que P(k+1) est vraie. $5^{k+1} = 5 \times 5^k$, or par hypothèse de récurrence $5^k \in A$ et par la définition inductive de A, $5 \times 5^k \in A$. Ainsi, P(k+1) est vraie.

D'après le principe de récurrence, on peut conclure que $\forall k \in IN$, P(k) est vraie et en déduire que $A' \subseteq A$.

Finalement, $A \subseteq A'$ et $A' \subseteq A$ donc A = A'.

b- Soit
$$B' = \{2^n 3^m, (n, m)^2 \in IN - \{(0, 0)\}\}.$$

– montrons que $B \subseteq B'$.

Soit pour tout $x \in B$ la proposition P(x): " $x \in B'$, montrons par induction que $\forall x \in B$, P(x) est vraie.

* base:

$$\begin{array}{l} 2=2^{1}\ 3^{0}\in B^{'}\ \mathrm{car}\ 0,1\in I\!\!N-\{(0,0)\},\\ 3=2^{0}\ 3^{1}\in B^{'}\ \mathrm{car}\ 1,0\in I\!\!N-\{(0,0)\},\\ \mathrm{donc}\ P(2)\ \mathrm{et}\ P(3)\ \mathrm{sont}\ \mathrm{vraies}. \end{array}$$

* hérédité: Supposons qu'il existe deux éléments a et b de B tels que P(a) et P(b) sont vraies, montrons que P(ab) est vraie. Par hypothèse, il existe $(m,n) \in \mathbb{N} - \{(0,0)\}$ et $(p,q) \in \mathbb{N} - \{(0,0)\}$ vérifiants $a = 2^m 3^n$ et $b = 2^p 3^q$. $ab = 2^m 3^n 2^p 3^q = 2^{m+p} 3^{n+q}$ avec $(m+n,p+q) \neq (0,0)$, ce qui signifie que $ab \in B'$ par définition de B'. ainsi, P(ab) est vraie.

D'après le principe d'induction, pour tout $x \in B$ P(x) est vraie, ce qui permet d'en déduire que $B \subseteq B'$.

- Montrons par que $B^{'}\subseteq B$. Soit pour tout $(n,m)\in I\!\!N-\{(0,0)\}$ la proposition $P(n,m): "2^n 3^m\in B$ ", montrons par induction que $\forall (n,m)\in I\!\!N-\{(0,0)\}, P(n,m)$ est vraie.
 - * base : il existe deux cas de base les couples (1,0) et (0,1). $2^1 \ 3^0 = 2$ et $2^0 \ 3^1$. Or par définition de $B, 2 \in B$ et $3 \in B$ donc P(1,0) et P(0,1) sont vraies.
 - * hérédité : Supposons qu'il existe $(n,m) \in \mathbb{N} \{(0,0)\}$ tel que P(n,m) est vraie, montrons que P(n+1,m) et P(n,m+1) sont vraies.
 - · $2^{n+1}3^m = 2 \times 2^n \ 3^m$, or par hypothèse de récurrence $2^n \ 3^m \in B$ et par la définition inductive de $B, 2 \in B$ et $2 \times 2^n \ 3^m \in B$, on en déduit que $2^{n+1} \ 3^m \in B$ et P(n+1,m) est vraie.
 - · $2^n \ 3^{m+1} = 3 \times 2^n \ 3^m$, or par hypothèse de récurrence $2^n \ 3^m \in B$ et par la définition inductive de $B, 3 \in B$ et $3 \times 2^n \ 3^m \in B$, on en déduit que $2^n \ 3^{m+1} \in B$ et P(n, m+1) est vraie.

D'après le principe d'induction, pour tout $(n, m) \in \mathbb{N} - \{(0, 0)\}$ P(n, m) est vraie et on peut en déduire que $B' \subseteq B$.

Finalement B = B'.

Exercice 2 : Définition inductive sur les mots

- a- N'importe quelle chaîne de caractères ne contenant que des a des b et des c fait l'affaire !
- b- $M = \{a^k b^k | k \in IN\}$, définition inductive
 - base : $\epsilon \in M$
 - induction : si $u \in M$ alors $aub \in M$

Ce qui donne les ensembles :

$$-\mathbf{B} = \{\epsilon\}$$

$$- \mathbf{F} = \{ \text{augmente} : \begin{array}{ccc} M & \rightarrow & M \\ u & \rightarrow & aub \end{array} \}$$

Exercice 3: Terminaison d'algorithme récursif

En utilisant la définition inductive de l'ensemble des listes, montrons par induction que l'algorithme *longueur* se termine.

- base : pour la liste vide noté ϵ le test n'est pas vérifié et l'algorithme s'arrête en exécutant "retourner 0".
- induction : supposons que l'algorithme s'arrête pour une liste l. Montrons qu'il s'arrête pour toutes listes (e, l) avec $e \in \mathcal{A}$.

 $(e,l) \neq \epsilon$ n'est pas la liste vide, le test n'est donc pas vérifié.

Par hypothèse, l'algorithme longueur s'arrête pour la liste l, donc l'exécution de "retourner 1 + longueur(listeQueue())" se termine aussi.

Donc logueur se termine pour toutes listes (e, l).

D'àprès le principe de récurrence, l'algorithme termine quelle que soit la liste donnée en paramètre.

Exercice 4 : Définition inductive de fonctions

- a- Soit pour tout entier n, P(n): longueur $((a_1, a_2, ..., a_n)) = n$. Montrons par récurrence que $\forall n \in IN \ P(n)$ est vraie.
 - **base** : pour n = 0, la liste est vide, elle ne contient aucun élément, donc la propriété est vraie,
 - **hérédité**: Supposons qu'il existe un entier n tel que P(n) soit vraie. Par définition inductive des listes, il existe $a_0 \in A$ et $l = (a_1, a_2, \ldots, a_n)$ tel que $(a_0, a_1, a_2, \ldots, a_n) = \text{ajout}_{a_0}(l)$. Par définition de la fonction longueur, longueur(ajout_{a_0}((a_1, a_2, \ldots, a_n)) = 1 + longueur((a_1, a_2, \ldots, a_n)). Donc par hypothèse, longueur $((a_0, a_1, a_2, \ldots, a_n)) = n + 1$. D'o P(n+1) est vraie.

D'après le principe de récurrence, pour tout n entier, P(n) est vraie.

- b- Concaténation de deux listes :
 - **base** : concat $(\epsilon, l_2) = l_2$.
 - induction : si $e \in A$, $l_1 \in L$ et $l_2 \in L$, concat $(ajout_e(l_1), l_2) = ajout_e(concat(l_1, l_2))$
- c- preuve par induction sur l'ensemble des listes...
 - **base**: pour toute liste l_2 , $concat(\epsilon, l_2) = l_2$ or $(\epsilon . l_2) = l_2$

- **hérédité**: Supposons qu'il existe $(l_1, l_2) \in L^2$ tel que $concat(l_1, l_2) = (l_1.l_2)$. $concat(ajout_e(l_1), l_2) = ajout_e(concat(l_1, l_2)) = (e.l_1.l_2)$. Or $(ajout_e(l_1).l_2) = (e.l_1.l_2)$ D'o $concat(ajout_e(l_1), l_2) = (ajout_e(l_1).l_2)$.

D'après le principe d'induction, pour tout couple de listes, $concat(l_1, l_2) = (l_1.l_2)$.

Exercice 5: Arbre binaire

- b- Ensemble des arbres binaires \mathcal{T} :
 - $-\mathbf{B} = \{\epsilon\}$
 - $\mathbf{F} = \{enracine_a \mid a \in A \text{ et } enracine_a(g, d) = (a, g, d)\}$
- c- hauteur :
 - * base : $h(\epsilon) = 0$
 - * induction : $h(a,g,d) = 1 + \max(h(g), h(d))$
 - nombre de feuilles :
 - * base : $f(\epsilon) = 0$, $f((a, \epsilon, \epsilon)) = 1$,
 - * induction : f((a,g,d)) = f(g) + f(d)
 - nombre de noeuds :
 - * base : $n(\epsilon) = 0$
 - * **induction**: n((a,g,d)) = 1 + n(g) + n(d)
- d- Preuve par induction:

$$n(x) \le 2^{h(x)} - 1$$
:

- base : $n(\epsilon) = 0 \le 0 = 2^0 1 = 2^{h(\epsilon)} 1$, donc la propriété est vraie pour les cas de base,
- − **induction** : Soient $a \in A$, g, d ∈ \mathcal{T} , supposons que la propriété est vraie pour ces deux arbres. D'après la définition inductive des fonctions on a n((a,g,d)) = 1 + n(g) + n(d) et h(a,g,d) = 1 + $\max_a(h(g), h(d))$. Or par hypothèse : n((a,g,d)) = 1 + n(g) + n(d) ≤ $2^{h(g)} 1 + 2^{h(d)} 1 + 1 \le 2^{max(h(g),h(d))} + 2^{max(h(g),h(d))} 1 \le 2^{1+max(h(g),h(d))} 1 \le 2^{h(a,g,d)} 1$