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A theory for evolution of either gene sequences or molecular sequences must take into account that
a population consists of a finite number of individuals with related sequences. Such a population will
not behave in the deterministic way expected for an infinite population, nor will it behave as in adaptive
walk models, where the whole of the population is represented by a single sequence. Here we study
a model for evolution of population in a fitness landscape with a single fitness peak. This landscape
is simple enough for finite size population effects to be studied in detail. Each of the N individuals in
the population is represented by a sequence of L genes which may either be advantageous or
disadvantageous. The fitness of an individual with k disadvantageous genes is wk =(1− s)k, where s
determines the strength of selection. In the limit L:a, the model reduces to the problem of Muller’s
Ratchet: the population moves away from the fitness peak at a constant rate due to the accumulation
of disadvantageous mutations. For finite length sequences, a population placed initially at the fitness
peak will evolve away from the peak until a balance is reached between mutation and selection. From
then on the population will wander through a spherical shell in sequence space at a constant mean
Hamming distance �k�� from the optimum sequence. We give an approximate theory for the way �k��
depends on N, L, s, and the mutation rate u. This is found to agree well with numerical simulation.
Selection is less effective on small populations, so �k�� increases as N decreases. Our simulations also
show that the mean overlap between gene sequences separated by a time of t generations is of the form
Q(t)=Qa +(Q0 −Qa)exp(−2ut), which means that the rate of evolution within the spherical shell is
independent of the selection strength. We give a simplified model which can be solved exactly for which
Q(t) has precisely this form. We then consider the limit L:a keeping U= uL constant. We suppose
that each mutation may be favourable with probability p, or unfavourable with probability 1− p. We
show that for p less than a critical value pc , the population decreases in fitness for all values of U,
whereas for pc Q pQ 1/2, the population increases in fitness for small U and decreases in fitness for large
U. In this case there is an optimum non-zero value of U at which the fitness increases most rapidly,
and natural selection will favour species with non-zero mutation rates.
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1. Introduction

The ideas of fitness landscapes and sequence spaces in
models of evolution are now familiar (Eigen et al.,
1989; Fontana et al., 1993; Kauffman, 1993). We may
be considering the space of all possible proteins of
length L composed of 20 types of amino acids, or the
space of all possible length L sequences of DNA
composed of four types of bases, or a chromosome

with L loci where a very large number of alternative
alleles may exist for each locus. The fitness landscape
determines the multiplication rate of each sequence,
which is either the mean number of offspring of an
individual with a given gene sequence in a biological
population, or the replication rate of a given chemical
sequence in a model for molecular evolution. There
has been much interest in the structure of these fitness
landscapes: in particular in the number and sizes of
the local optima in such landscapes, and the
correlation in fitness between neighbouring sequences
(Kauffman & Levin, 1987; Kauffman & Weinberger,
1989; Weinberger, 1991; Weinberger & Stadler, 1993).
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If the population size is assumed to be infinite then
deterministic equations can be obtained for the
relative frequencies of sequences with different
fitnesses within the population (Schuster, 1986; Eigen
et al., 1989; Tarazona, 1992; Higgs, 1994; Wiehe
et al., 1995). If the mutation rate (or replication error
rate) is not too large then the population tends to
cluster about the fittest sequence. The distribution of
frequencies converges to a stationary state known as
the quasi-species. For simple landscapes the quasi-
species distribution can be calculated exactly. Other
studies have emphasized the ruggedness of fitness
landscapes, and have modelled evolution as an
adaptive walk (Macken et al., 1991; Flyvbjerg &
Lautrup, 1992; Kauffman, 1993). The population is
represented by a single point in sequence space which
moves due to mutations, to neighbouring fitter
sequences until a local optimum is reached.

Both these types of model neglect the important
feature that the population is of finite size and that
stochastic effects may be extremely large. One cannot
assume that there is a finite concentration of copies of
each sequence, since the number of possible sequences
of a given length increases exponentially with the
length, and may be far larger than the total number
of individuals in the population. Neither can one
assume that the population is just a single point in
sequence space. The real population is a cluster of
related sequences in a given region of sequence space.
It is important that there is a range of sequences and
of fitnesses within the population, otherwise natural
selection has nothing to work on. If the landscape is
flat (i.e. neutral evolution) the population will wander
at random through sequence space (Derrida & Peliti,
1991; Higgs & Derrida, 1991, 1992). If the landscape
is not flat then selection will tend to drag the
population towards regions of higher than average
fitness. However, natural selection is rather inefficient.
It is by no means true that a population always
evolves relentlessly uphill towards the nearest local
fitness maximum, as in the adaptive walk models. The
fitness of a population can often decrease due to
stochastic effects.

The archetypal model which demonstrates this is
Muller’s ratchet (Haigh, 1978; Lynch & Gabriel,
1990; Wagner & Gabriel, 1990; Charlesworth et al.,
1993; Lynch et al., 1993; Gabriel et al., 1993; Stephan
et al., 1993; Wagner & Krall, 1993; Higgs &
Woodcock, 1995). Here one considers a gene
sequence of effectively infinite length, initially
composed of favourable genes. Unfavourable mu-
tations occur at rate U which each reduce the fitness
of the individual by a factor (1− s). Although
selection acts against these unfavourable mutations, it

is powerless to stop them accumulating, and the
fitness therefore decreases indefinitely until the
population is no longer viable. Lynch et al. (1993) call
this ‘‘mutational meltdown’’. The Muller’s ratchet
model assumes that all mutations are bad, and that
there is no possibility of back mutation. This is
entirely reasonable if the sequence is very long and is
already very close to an optimum. If the sequence has
only a moderate fitness and is not close to a fitness
peak then there is a considerable chance of a mutation
leading to an increase in fitness. Evolution will thus
lead toward higher fitness sequences, but will never
manage to get right to the top of the fitness peaks,
since Muller’s ratchet will set in. The population will
evolve toward a steady state with constant fitness,
where there is a balance between selection and
unfavourable mutations. This steady state is a
dynamic one in which the sequence can continue to
evolve even though the mean fitness remains constant.
It is therefore not equivalent to the steady state
quasi-species distribution in the infinite population
model. Finite size population effects in similar models
to this have been considered by Nowak & Schuster
(1989) and Bonhoeffer & Stadler (1993).

It is useful to borrow an image from Kauffman
(1993, Chapter 3). If the fitness landscape is viewed
as a mountain range, then the population is likely to
be found hanging like a layer of cloud below the
mountain peaks but above ground level. The main
aim of this article is to determine how high are the
clouds.

2. Description of the Model

We suppose that each individual has a sequence of
L genes, and that each gene may be either of two
possible alleles. Each individual will be represented by
a sequence s1s2 · · · sL where each of the si may be +1
or −1. Each +1 represents a favourable allele having
a relative fitness of 1, and each −1 represents an
unfavourable allele having a relative fitness 1− s. The
fitness of an individual with k unfavourable alleles is
(1− s)k, i.e. we have assumed that the contributions
to the fitness from different loci are independent, and
therefore multiplicative. The fitness landscape thus
has a single optimum sequence, and the fitness of a
sequence depends only on its Hamming distance from
the optimum. Any landscape with this property might
be called a ‘‘single-peak’’ landscape. The term
‘‘single-peak landscape’’ is sometimes used to indicate
the case where there is one high fitness sequence (or
Master sequence) in an otherwise flat landscape,
which is not the model which we study here. In the
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title we use the term ‘‘multiplicative single-peak’’ to
distinguish from the other case.

In our model there are N individuals in the
population at each generation. Individuals reproduce
asexually with a reproduction rate proportional to
their fitness. For each individual in a new generation,
an individual is selected to be its parent from the
previous generation with a probability proportional
to the fitness of the parent. In this way the mean
number of offspring of a given parent individual i is
wi /�w�, where wi is the fitness of individual i, and �w�
is the mean fitness in the parent generation. The
probability that individual i has ni offspring is

p(ni )= xni
i (1− xi )N− ni0Nni1, (1)

where xi =wi /(N�w�). After choosing the parent for
each of the new individuals the gene sequences are
copied from the parents to the offspring with a small
probability u of mutation occurring at each gene.
Hence, soffspring

i = sparent
i with probability 1− u, and

soffspring
i =−sparent

i with probability u, where typically
u�1.

When simulating this model we began by setting all
individuals to be identical to the optimum sequence

(si =1 for all i, and for all individuals). Initially
almost all mutations are unfavourable, therefore the
population moves away from the optimum sequence,
and the number k of −1 genes in the sequence
increases. As k increases the chance of a favourable
mutation increases. After a certain time a steady state
is reached where the occurrence of new unfavourable
mutations is balanced by the action of selection plus
the occurrence of favourable mutations. Figure 1
shows the mean number �k�� of unfavourable genes
per individual in the steady state as a function of u.
This is just the mean Hamming distance of the
population from the optimum sequence. Note that
two separate averages are necessary here: the angular
brackets indicate an average over all individuals in the
population at one moment in time, and the overbar
indicates a time average over many generations after
the steady state has been reached.

The expected value of �k�� is known in several
limits. Firstly, in the neutral evolution limit, where
s=0, all sequences have an equal probability of
occurring. On average half the genes will be −1, and
therefore �k��=L/2. Secondly, if s is non-zero, and
u:0 only the optimum sequence will remain in the
population, so that �k��:0. If u:1/2, on the other
hand, the offspring sequences will have no correlation

F. 1. Mean Hamming distance �k�� from the optimum sequence as a function of mutation rate u, for L=100 and s=0.01. The solid
line shows the exact result for the infinite population. Symbols indicate simulation results. Circles N=384, Squares N=96.
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F. 2. Mean Hamming distance �k�� from the optimum sequence as a function of population size N, for U= uL=1.0 and s=0.01.
Solid lines show the result of an approximate theory, and symbols show simulation results. (A) L=40, (B) L=100, (C) L=200.

with their parent sequences, and again �k��:L/2.
In general we know that �k�� is an increasing
function of u and a decreasing function of s, and we
would like a theory to predict �k�� for any values of
u and s.

The other important variable in the problem is
the population size N. Selection can only work
if there is a range of fitnesses in the population.
If N is small all the sequences will be very similar,
since they can all be traced back to a common
ancestor at a time of order N generations in the
past. The spread of fitnesses within the population
will therefore be small if N is small, and hence
selection will be less effective. We therefore expect
that �k�� will increase if we decrease the size of the
population. This is seen to be the case in Fig. 2, where
we show �k�� as a function of N for three different
values of L. We have chosen u so that uL=1 in each
case.

When N:a the problem becomes a deterministic
one. The fraction Cj of the population having j
unfavourable genes satisfies the following equation in
the stationary state:

Cj =
1
W

s
L

k=0

Mjk (1− s)kCk , (2)

where the mean fitness W is given by

W= s
L

k=0

(1− s)kCk , (3)

and the probability of mutation from a sequence
with k unfavourable genes to a sequence with j
unfavourable genes is

Mjk = s
imax

imin
0ki10 L− k

j− k+ i1u j− k+2i(1− u)L− j+ k−2i. (4)

In eqn (4) the index i represents the number of
mutations from −1 to +1 genes, and the limits
are imin =max(0, k− j), and imax =min(k, L− j).
Equation (2) can be solved exactly by making the
ansatz that Ck is a binomial distribution:

Ck =0Lk1ak(1− a)L− k. (5)

By substituting into (2) we find that this is the correct
solution, with the value of a given by

a= 1
2((1− u+2u/s)−z(1− u+2u/s)2 −4u/s). (6)
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Examples of stationary Ck distributions in other
fitness landscapes are given by Higgs (1994). For
general choices of fitness landscapes it is usually
necessary to solve the equivalent eqn (2) by
numerical iteration. The particular choice of the
multiplicative landscape makes an analytical solution
possible.

From (5), the mean Hamming distance from the
optimum sequence is �k��=a kCk = aL, and the
mean fitness is W=(1− as)L. If we suppose that
s�1, and u�1, but that u/s may be of order 1, then
the u terms in (6) are negligible, and a is just a
function of u/s. If, in addition, u/s�1, then a1 u/s.
If we take the limit u�1, and L�1, keeping U= uL
constant, then (5) becomes a Poisson distribution with
�k��=U/s. The solution in this limit has already been
given by several authors (Kimura & Maruyama, 1966;
Haigh, 1978; Higgs, 1994). The other limit of (5)
which is of interest is when u=1/2, i.e. the replication
procedure is completely random. In this case a=1/2
independent of s, as is expected.

3. The Moments Equations

Having found an exact solution for �k�� for the
infinite population, we will now obtain an approxi-
mate solution for finite N. The mean Hamming
distance from the optimum sequence at a given
generation is

�k�=
1
N

s
i

ki , (7)

where the sum is over all individuals in that
generation, and ki is the number of −1 genes in the
ith individual. We may now define the time averaged
values of the moments Mn of the distribution of the
ki as

Mn =
1
N

s
N

i=1

(ki − �k�)n, (8)

where the time average is to be taken after the
ensemble average. We will use V for the variance of
the distribution synonymously with M2. It is possible
to derive a set of equations relating each moment to
the moment of next higher order. We have already
given several of these equations for the problem of
Muller’s ratchet (Higgs & Woodcock, 1995). In the
present case we require only the first two:

u(L−2�k��)= (1−2u)sV, (9)

sM3 + (4u+1/N)V= uL. (10)

A derivation of these equations is given in the
Appendix. It has been assumed that u, s and 1/N are
all much less than 1. Here we have only two equations
with three unknown quantities, �k��, V and M3. Each
higher order equation for the moments introduces a
further unknown, so that no matter how many of
these equations we calculate, we will always be forced
to introduce an approximation to close the set of
equations. One suitable closure approximation is
the following. We know that in the limit N:a,
the distribution is binomial with �k��= aL,
V= a(1− a)L, and M3 = a(1− a)(1−2a)L. Hence
for the infinite population we know that

M3 =V(1−2�k��/L). (11)

We will suppose that (11) is approximately true
for finite N. Combination of (9), (10) and (11)
gives a quadratic equation for �k�� which has the
solution

�k��
L

=
1
2 001+

2u
s

+
1

2sN1
−X01+

2u
s

1
2sN1

2

−
4u
s

−
1
sN1. (12)

We have neglected terms of small order in derivation
of (9), (10) and (12), so that only ratios of small
parameters appear in (12). If we take the limit N:a,
we obtain the result of (6), except that the u term is
not given correctly, since we have already neglected
terms of this order.

The prediction of eqn (12) is given in Fig. 2, in
comparison to the simulation results. The agreement
is not too bad for most cases, although the measured
values for L=200 are substantially higher than the
prediction. We see from (12) that a finite population
will behave like an infinite one only if sN�1. If sN
is of order one then �k�� is larger for the finite
population that for the infinite one, and the mean
fitness will be lower. This confirms what we stated
qualitatively above: selection is less effective in small
size populations, and the mean fitness decreases as the
population size decreases.

4. The Strong Selection Limit

In deriving the moments equations it was assumed
that selection was weak, i.e. s�1. Figure 3 shows the
simulation results of �k�� as a function of u for larger
s values. It can be seen that as s:1, the curves tend
to a limiting form. Suppose that kmin is the number of
unfavourable genes on the sequence which has the
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highest fitness within the population at a given
generation. There will typically be more than one
individual with kmin unfavourable genes, but the
sequences of these individuals may differ, even
though they have the same fitness. In the strong
selection limit the fitness of these individuals will be
so much larger than that of individuals with a higher
k that only these individuals will have offspring. Let
us suppose that kmin =0, i.e. that there is at least one
individual with the optimum sequence. All individuals
at the next generation will be descended from parents
which had the optimum sequence. Hence the expected
number of individuals Nk with k unfavourable genes
is

Nk =N0Lk1uk(1− u)L− k. (13)

Note that the expected values of the Nk at the next
generation are independent of the value of N0 at the
parent generation, provided N0 is at least 1. As long
as N(1− u)L q 1, N0 will almost always be at least 1,
and it is valid to assume that kmin =0. In this case

from (13) we obtain �k��= uL. In Fig. 3 the data
for the large s values are seen to lie on this straight
line at small u values. At higher u, �k�� increases
above this line, and there is a bend in the curve close
to the value u= uc , where N(1− uc )L =1. For uq uc

the optimum sequence is not always present in the
population. This argument is very similar to that
given by Bonhoeffer & Stadler (1993), in their
discussion of error thresholds in finite populations.
For finite populations, however, there is no true
singularity in the curve of �k�� vs. u, and hence uc is
not defined precisely. We prefer only to use the term
error threshold for infinite population models where
there is a singularity (e.g. Eigen et al., 1989; Higgs,
1994). Nevertheless, we see that there are two types
of behaviour in this model with finite N. At small u
the optimum sequence is almost always present, and
at larger u the fittest sequence varies from one
generation to the next, and is usually not the optimum
sequence.

Let f(kmin) be the probability that the fittest
individual at any given generation has kmin unfavour-
able genes. In the strong selection limit all the

F. 3. Mean Hamming distance �k�� from the optimum sequence as a function of mutation rate u, for N=100, and L=100. Symbols
indicate simulation results. Circles s=0.5, Squares s=0.95, Diamonds s=0.99966. The curves tend to a limit as s tends to 1. The limiting
curve lies on the line �k��= uL for u less than uc 1 0.03, indicating that the population is localized close to the optimum sequence for
uE uc .
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F. 4. The probability F(kmin) that the fittest individual in the population has kmin unfavourable genes, calculated for N=100 and
L=100, in the limit s tends to 1. Circles u=0.025, Diamonds u=0.035, Triangles u=0.04, Squares u=0.045. At u=0.025 the optimum
sequence is almost always present, and at u=0.045 it is almost never present.

parents have k= kmin, hence the mean value of k in
the next generation will be

s
L

k=0

kMk,kmin = kmin + u(L−2kmin). (14)

The mutation matrix Mk,kmin is that given in eqn (4).
The time averaged value �k�� is therefore given
by

�k��= s
L

kmin =0

f(kmin)(kmin + u(L−2kmin)), (15)

and it just remains to calculate f(kmin). The probability
P(k, jmin) that an individual has at least k unfavour-
able genes in the sequence, given that its parent had
jmin unfavourable genes is

P(k, jmin)= s
L

i= k

Mi,jmin. (16)

The probability that all the individuals in the new
generation have at least k unfavourable genes is
therefore P(k, jmin)N, and the probability that the

fittest individual in the new generation has exactly
kmin unfavourable genes is

Akmin, jmin =P(kmin, jmin)N −P(kmin +1, jmin)N. (17)

The distribution of kmin must satisfy

f(kmin)= s
jmin

Akmin, jmin f( jmin). (18)

We have now reduced the original stochastic problem
to a deterministic problem: that of finding the
stationary solution of (18). We have found f(kmin)
numerically by iterating the equation until the
distribution converges. Having done this �k�� is
obtained from (15). We have checked that the curve
of �k�� against u obtained by this method is the same
as that obtained by simulation of the original model
in the strong selection limit.

The approximate argument above suggests that uc

is the solution of N(1− uc )L=1. For N=100 and
L=100 gives uc =0.045. The data in Fig. 3 seem to
move away from the straight line slightly before this
(u=0.03–0.035). In Fig. 4 we show the calculated
curves f(kmin) for four values of u in this range. We see
that for u=0.025 the optimum sequence is almost
always present, and at u=0.045 it is almost never
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present. For intermediate values the optimum
sequence is present some of the time. The population
thus gradually escapes from the optimum over a
range of u values.

5. Time Correlation of Gene Sequences

If sa
i represents the ith gene on individual a

(which may be either +1 or −1), then one way
of measuring the correlation between two individ-
uals a and b is to use the overlap qab =1/L ai s

a
i s

b
i .

Two identical sequences have qab =1, whilst two
completely uncorrelated sequences have qab =0. In
this section we are interested in the mean overlap
Q(t) between sequences at a given generation and
sequences t generations later.

Q(t)=
1

N2L
s
a

s
b

s
i

sa
i (t')sb

i (t+ t') (19)

Here, the sum over a represents a sum over all
individuals at a time t', and the sum over b represents
a sum over all individuals at a time t'+ t. The
overbar indicates a time average over all t'. We
assume that the population has reached the steady

state and that the correlation between two gener-
ations only depends on the time t between them.

In the neutral limit, s=0, it is easy to show
that Q(t)=Q0(1−2u)t (which is approximately
Q0 exp(−2ut) for small u), where the mean overlap
between two individuals at the same generation is
Q0 =1/(1+4uN) (see Derrida & Peliti, 1991; Higgs
& Derrida, 1991, 1992). We have measured Q(t)
by simulation for non zero s. Figure 5 shows that
the results may be well fitted by a function of the
form

Q(t)=Qa +(Q0 −Qa)exp(−2ut). (20)

It can be seen that although both Q0 and Qa

change with s, the rate of decay appears to be
equal to 2u independent of s. The value of Qa is
easy to calculate. Suppose that individuals a and
b have ka and kb −1s in their sequences. If the
two individuals are widely separated in time then
the positions of the −1s within the sequence will
not be correlated, so that qab=(1/L2)(kakb+
(L−ka )(L−kb )−ka (1−kb )− kb (1−ka )). Taking an
average of this equation gives

Qa =1−4
�k��
L 01−

�k��
L 1. (21)

F. 5. The overlap function Q(t) shown for N=100, L=100, and u=0.01. Dashed lines show simulation results, and solid lines show
best fits of the data to the exponential formula given in the text. (A) s=0.02, (B) s=0.014, (C) s=0.01, (D) s=0.0.
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Thus Qa depends only on the already known value
of �k��.

If the population is in the steady state and u is
sufficiently large so that the population has moved
away from the optimum, most of the individuals have
k close to �k��. The population is thus to be found
within a spherical shell at Hamming distance �k��
from the optimum sequence. Since the population is
finite, and since all individuals are related by common
ancestry, not all of the sequences at this Hamming
distance from the optimum will be found. The whole
of the population will be clustered together on ‘‘one
side’’ of the optimum. The population will wander
around the shell at random. Qa is just the overlap
between two randomly chosen points on this spherical
shell. In the neutral case �k��=L/2, therefore
Qa =0.

We have not found a simple argument for Q0. This
is the mean overlap between two individuals at the
same generation. As s is increased the probability that
two individuals have a common ancestor in a recent
generation increases, and the mean time since any two
individuals had a common ancestor decreases. This
means that the overlap will increase, as is seen in the
simulations. The problem can be solved exactly for
the neutral case (Derrida & Peliti, 1991; Higgs &
Derrida, 1991, 1992; Higgs, 1995), but when selection
is present an analytical solution is much more
difficult. We have studied the distribution of times
since the existence of common ancestors in more
detail for the problem of Muller’s ratchet (Higgs &
Woodcock, 1995), and we expect a similar type of
behaviour in this problem.

We have seen that the rate of the exponential decay
in (20) appears to be independent of s. In other words,
the rate of evolution within the spherical shell in
sequence space does not depend on the radius of the
shell. Although we have no strong argument as to
why this is the case, we will now discuss a simplified
toy model where Q(t) can be calculated exactly, and
shown to be of the form (20).

In the toy model there is just one sequence at each
moment in time, and this has exactly K= �k�� genes
which are −1 and L–K genes which are +1. Time
proceeds by iterations. At each iteration two genes are
picked at random on the sequence and their values are
interchanged. If a given gene is +1, the probability
that it changes to −1 is the probability that it is
picked, and that the other gene picked is a −1. Thus
the probability that it changes is 2K/L(L−1). If a
gene is −1 the probability that it changes is
2(L−K)/L(L−1). If both the genes picked have the
same sign then there is no change to the sequence on
that iteration. Let p++(n) be the probability that a

gene is +1 at iteration n, given that it was +1
initially, and let p+−(n) be the probability that it is −1
at iteration n, given that it was +1 initially. These
probabilities satisfy the recursion

0p++(n+1)
p+−(n+1)1=G

G

G

F

f

1−
2K

L(L−1)
2K

L(L−1)

2(L−K)
L(L−1)

1−
2(L−K)
L(L−1)

G
G

G

J

j

×0p++(n)
p+−(n)1. (22)

This matrix has eigenvalues 1 and 1−2/(L−1).
Using the initial condition p++(0)=1, we obtain the
solution

0p++(n)
p+−(n)1=0(L−K)/L

K/L 1
+(1−2/(L−1))n0 K/L

−K/L1. (23)

In a similar way we can calculate the functions
p−+(n) and p−−(n), which are the probabilities of a
gene being +1 or −1, given that it was −1 initially.
The mean overlap between the sequence at iteration
n and the initial sequence is

Q(n)= (1−K/L)(p++(n)− p+−(n))

+K/L(p−−(n)− p−+(n))

=1−
4K
L 01−

K
L1

+(1−2/(L−1))n 4K
L 01−

K
L1. (24)

If L�1 then (1−2/(L−1))n 1 exp(−2n/L). We now
wish to equate the time represented by one iteration
in the toy model to the mean time between mutations
in the real model. Since there are an average of uL
mutations per generation per sequence in the real
model, the mean time between mutations is 1/uL.
Hence exp(−2n/L)= exp(−2ut), and (24) is exactly
of the form (20) which was found for the real model.
In the toy model Q0 =1 since there is only one
sequence, whereas for the real model Q0 Q 1. Qa is the
same in both models. In the toy model the eigenvalues
of the matrix are not dependent on K, and this means
that the exponential decay rate is independent of Q0

and Qa as observed in the real model. This was our
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F. 6. The rate of accumulation of mutations R shown as a function of U for several values the fraction p of favourable mutations.
Positive R means decreasing fitness, and negative R means increasing fitness. R is always positive for pQ pc , whilst for pq pc R is negative
at small U. These curves are simulation results with N=100 and s=0.2. The values of p are 0.0 (triangles), 0.1 (diamonds), 0.12 (squares)
and 0.14 (circles). The critical value pc lies between 0.1 and 0.12.

main reason for introducing the toy model in this
section.

6. Behaviour of the Model far from Equilibrium

Up to now we have mostly been studying properties
of the model in the steady state. In this section we will
consider the rate of approach of �k� towards its
equilibrium steady state value, beginning at a value
far from equilibrium. We will simplify the model
slightly by assuming that L�1, and that U= uL is a
constant of order 1. In this way L drops out of the
problem. Suppose that the mean Hamming distance
from the origin is �k� at a given time. The probability
that a mutation leads to an increase in fitness is
p= �k�/L. The probability that m mutations occur
in one generation is a Poisson distribution Um/
m! exp(−U), and each mutation either decreases k by
one with probability p, or increases k by one with
probability 1− p. If p=0 then we have the familiar
model for Muller’s ratchet (Higgs & Woodcock,
1995). This model is much easier to simulate than the
original model for finite L, since we do not need to
store the whole gene sequence for an individual. It is
sufficient to store a value k for each individual in

order to calculate the fitness of an individual relative
to the other members of the population, and hence to
determine the multiplication rates of the different
individuals. When doing simulations of this model we
suppose that �k� and L are so large that �k� may
change without altering p significantly. This means
that �k� will change at a constant rate for a given p.
(If L were finite then the rate of change of �k� would
decrease as �k� approached its steady state value).

Thus, in the simplified model with infinite L, the
relevant parameters are U, p, s and N, and we wish
to calculate R= d�k�/dt as a function of these
parameters. Positive R means that the population is
moving away from the optimum, and decreasing in
fitness, as in the usual model of Muller’s ratchet,
whilst negative R means that the population is
increasing in fitness. Figure 6 shows values of R
measured by simulation as a function of U for several
different values of p (with s and N kept constant). This
figure is reminiscent of a second order phase
transition. For p less than a critical value pc , R is
positive for all U, and R increases with U. In this
example pc is close to 0.11, but it will vary with N and
s. For pc Q pQ 1/2, R is negative at small values of
U, passes through a minimum at an intermediate
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value of U, and becomes positive at large U. For
pq 1/2, R is always negative.

The region pq 1/2 makes little sense, since this
would mean that the population was actually less fit
than a random sequence. There is no reason why a
population should ever have got into this situation.
The other two cases are more realistic. If pQ pc the
population is already rather close to the fitness
maximum, and most mutations are unfavourable. It
therefore pays to have as few mutations as possible.
In this case natural selection will tend to cause a
reduction in the mutation rate, and to favour species
with lower mutation rates. On the other hand, if
pc Q pQ 1/2, there is an optimum mutation rate at
which the fitness increases most rapidly, and natural
selection will tend to cause an increase in the mutation
rate if it is too small.

7. Discussion

When discussing the theory of evolution in a given
fitness landscape it is important to remember that
evolution works with populations of a finite number
of individuals. At any one time the population ‘‘sees’’
only a small fraction of the fitness landscape. Natural
selection can only act upon the sequences which are
present in the population. Since all sequences in an
asexual population can eventually be traced back to
a single common ancestor, all the sequences are
related to each other. The whole population is
clustered together in a particular region of sequence
space. The cluster increases in size as the population
size increases, so that there is a larger spread of fitness
values in a larger population. Larger populations
therefore tend to respond more rapidly to selective
pressure, and to achieve higher mean fitnesses in the
steady state. Another way of saying this is that
random drift in sequence space is less important for
larger populations.

We wish to emphasize that finite and infinite
populations can behave qualitatively differently. For
the case L:a there is a perfectly stable concen-
tration distribution Ck if the population is infinite, but
for a finite population Muller’s ratchet sets in, and the
fitness decreases indefinitely. For finite L, both finite
and infinite populations reach a steady state.
Equation (12) shows that the mean Hamming
distance from the origin for a finite population may
only be slightly higher than for an infinite one if sN
is quite large. Hence the mean fitness may only be
slightly lower. However, the two situations are
qualitatively different. The total frequency of all
sequences at Hamming distance k from the optimum
sequence is given in (5) for the infinite population.

The frequency of each individual sequence is therefore
ak(1− a)L− k. Since aQ 1/2, the single sequence with
the highest frequency is always the optimum
sequence, even if �k���1. For a finite population with
�k���1, the optimum sequence will typically not be
present at all, and the sequence with the highest
frequency will have k close to �k��. In an infinite
population the frequency of each sequence remains
constant once a steady state is reached. For a finite
population the steady state is dynamic, and evolution
of the sequence continues to occur. In the
multiplicative landscape the population becomes
confined to a spherical shell in sequence space at
Hamming distance close to �k�� from the optimum.
The behaviour of the overlap function Q(t) shows
that the population wanders at random around this
spherical shell. Wagner & Krall (1993) have also
highlighted the difference between finite and infinite
populations. Other studies of models where the finite
population size is important include Nowak &
Schuster (1989), Bonhoeffer & Stadler (1994), and
Wiehe et al. (1995).

Section 6 of this article makes the link between the
model studied here and our previous work on
Muller’s ratchet. The fraction p of mutations which
are favourable depends on the distance of the
population from the fitness peak. A population
initially very close to the optimum will move away
from it, whilst a population initially far from the
optimum will approach it. In our simplification, we
took p to be constant, and hence the rate of change
of k was constant. We saw that for certain values of
p there is an optimum value of U for which the rate
of increase of fitness is largest. The question therefore
arises as to whether it is better to have as small a
mutation rate as possible, or whether there is some
non-zero mutation rate which is preferable.

Clearly, if the fitness landscape is unchanging, and
if the population is already close to the optimum in
the landscape, then it is preferable to reduce the
mutation rate as much as possible. In general the
steady state mean fitness is higher for smaller u,
whatever the shape of the landscape. In the simple
single peaked landscape studied here, it is easy for the
population to find the optimum sequence, since
selection is always acting towards the optimum. For
a general rugged landscape, however, there may be
many local optima. A population with a small
mutation rate is likely to become trapped in a rather
poor local optimum, whereas a population with a
higher mutation rate may avoid becoming trapped on
the lower peaks, and might find a local optimum with
a higher fitness. If the mutation rate is extremely low
then the population will almost all be clustered on a



.   . . 72

single sequence. The population will therefore
behave like an adaptive walk (Kauffman & Levin,
1987; Macken et al., 1991; Flyvbjerg & Lautrup,
1992). It is known that adaptive walks usually end
up on local optima far below the global optimum.
For reasonable values of u there will always be a
substantial degree of variation within the popu-
lation, and hence real populations will probably be
far from the adaptive walk limit.

The fitness landscape of a real biological species
is likely to change over time, either due to changes
in the environment or due to co-evolution of other
interacting species. If the fitness landscape is
changing in time, the population may not succeed
in finding the high fitness regions, even in a
relatively smooth fitness landscape. The population
for ever tries to climb uphill, but it never succeeds
in increasing its fitness, since although new favour-
able mutations are continually occurring, other
genes which were previously advantageous are
becoming disadvantageous. In a changing land-
scape it is clearly an advantage to have a non-zero
mutation rate, in order to keep up with the
changes. If the landscape is very rugged, the
problem of trapping in local optima may be less
severe if the landscape changes with time: what was
a peak will eventually become a hillside, and the
population will escape. Thus there are both
advantages and disadvantages for the population if
the landscape is changing.

In finite populations, stochastic effects must be
taken into account. This makes the problem much
more difficult to treat mathematically than for
infinite populations. We have used a very simple
smooth single-peaked landscape here, so that at
least an approximate analytical theory can be
given. This is a starting point for a theory of the
evolution of finite populations in rugged fitness
landscapes. We have seen that in this case the
population remains within a spherical shell in
sequence space once the steady state is reached.
Evolution within this shell is effectively neutral
since the mean fitness of the sequence does not
change. In a rugged landscape we might expect
something similar to occur. The population is likely
to remain in a band of sequence space at a certain
distance below the peaks, and evolve in a quasi
neutral fashion within this band. The long-term
behaviour will depend on whether these regions are
percolating through the whole of sequence space or
confined to isolated islands (see Kauffman, 1993
Chapter 3, and Amitrano et al., 1989). To obtain
a mathematical theory of this behaviour is an
important goal for future work.
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APPENDIX

Here we will derive the moments equations
used in Section 3. Consider an individual i with ki

unfavourable genes. Suppose that its offspring has
j= ki +mi unfavourable genes. The expectation
values of mi and m2

i are

E(mi )= s
j

( j− ki )Mj,ki = u(L−2ki ), (A. 1)

E(m2
i )= s

j

( j− ki )2Mj,ki

= u(1− u)L+ u2(L−2ki )2. (A. 2)

Now consider two individuals i and j having fit-
nesses wi and wj . The probability that these
individuals have ni and nj offspring in the next
generation is

(ni , nj )=
N!

ni !nj !(N− ni − n)!

× xni
i xni

j (1− xi − xj )N− ni − nj , (A. 3)

where xi =wi /N�w�, and �w� is the mean fitness of
the population at that generation. From this we
obtain

E(ni )=Nxi 1 1− s(ki − �k�), (A. 4)

E(n2
i )=N2x2

i +Nxi (1− xi )

1 2−1/N−3s(ki − �k�), (A. 5)

E(ninj )=N(N−1)xixj 1 1−1/N

−s(ki − �k�)− s(kj − �k�). (A. 6)

Here we assume that s�1, and only work to first
order is s, so that �w�1 1− s�k�. Suppose j is an
individual at generation t+1, and G(j) is its parent
at generation t; then clearly kj = kG( j) +mG( j), where
mG(j) is the number of new mutations in individual j.
Averaging this equation gives

�k�t+1 =
1
N

s
j

kG( j) +mG( j) =
1
N

s
i

ni (ki +mi ). (A. 7)

The sum over j indicates the average of the parents of
generation t+1. This has been replaced by a sum
over i, representing a sum over individuals in
generation t, and we count each one ni times. In this
model the ki and the mi are correlated as in (A. 1) and
(A. 2). In our previous derivation of these equations
for the Muller’s ratchet problem (Higgs & Woodcock,
1995) this was not the case. Now making use of (A. 1)
and (A. 4) we have

�k�t+1 =
1
N

s
i

(ki + u(L−2ki ))(1− s(ki − �k�))

= uL+(1−2u)(�k�t − sV). (A. 8)

In the stationary state �k�� is independent of time, and
(A. 8) becomes equation (9). To obtain the second of
the moments equations we need to evaluate

�k2�t+1 =
1
N

s
i

ni (ki +mi )2 (A. 9)

and

�k�2
t+1 =

1
N2 s

i

s
j

ninj (ki +mi )(kj +mj ), (A. 10)

which can be done using (A. 1)–(A. 6). Finally,
subtracting these gives V, and assuming that we are
in the stationary state gives eqn (10).


