Initiation Recherche
ING 2, EiLCO - 2016/2017
But
S'initier au domaine de recherche de l'optimisation stochastique. Cet enseignement présente de nombreuses méthodes de résolution de problèmes et s'appuie sur des exemples pratiques.
hautÉquipe d'enseignants
Sébastien Verel
Pour contacter un des intervenants : contacts.
Vous pouvez contacter l'équipe pour tout ce qui concerne cet enseignement et votre orientation.
Objectifs
Ils sont mis à jour régulièrement :
- Savoir définir un problème d'optimisation combinatoire
- Connaitre des exemples de problème d'optimisation (maxSAT, TSP, QAP, knapsack, etc.)
- Savoir modéliser un problème en un problème d'optimisation.
- Connaitre le principe d'une recherche locale à solution unique.
- Connaitre la recherche aléatoire
- Savoir comparer statistiquement deux algorithmes de recherche stochastiques.
- Savoir définir une marche aléatoire
- Connaitre les heuristiques "Hill-Climbing"
- Connaitre la notion d'optimum local
- Connaitre le dilemme exploration / exploitation
- Savoir définir les métaheuristiques classiques (recuit simulé, recherche taboue, iterated local search)
- Savoir définir les principes des algorithmes évolutionnaires
- Connaitre les différents types d'algorithmes évolutionnaires
- Savoir coder dans un langage les algorithmes d'optimisation précédents
- Savoir définir un problème d'optimisation numérique
- Connaitre l'algorithme de descente de gradient à pas fixe
- Connaitre les algorithmes de stratégie d'évolution : (1+1) et (mu/mu,lambda)
- Connaitre l'influence du step-size (sigma) dans ces algorithmes
- Connaitre le principe du réglage du step-size à l'aide de la rêgle du 1/5 success rule.
- Savoir coder dans un langage les algorithmes de stratégies d'évolution précédents
- Connaitre la notion d'optimum local pour l'optimisation numérique
Supports de Cours et de TP
Voici l'ensemble des supports de cours et des émoncés des TP.
Séance | Titre | cours | TD | TP |
---|---|---|---|---|
01 | Intro. pb. optimisation / modélisation | cours | td | tp |
02 | Algorithmes de recherche locale (1) | cours notes R | td code R | ks5 ks1000 |
03 | Algorithmes de recherche locale (2) | cours | td td | tp |
Bibliographie
Quelques repères biblio- /webo- graphiques qui vont se complèter au fur et à mesure :
- Métaheuristiques pour l'optimisation difficile, Johann Dréo, Alain Pétrowski, Patrick Siarry, Eric Taillard, 2003.
- Aide mémoire R, Aymeric Duclert, 2011.
- Comment rédiger un rapport ou une publication scientique., Alexandre Buttler, Université de France-Comté, 2002.
dernière modification : 2 mai 2017