# An Introduction to Multiobjective Optimization

Sébastien Verel

LISIC Université du Littoral Côte d'Opale Equipe OSMOSE

verel@univ-littoral.fr
http://www.lisic.univ-littoral.fr/~verel

Master informatique WeDSci, ULCO,

2021, version 0.1

# Single Objective Optimization

#### Inputs

Search space: Set of all feasible solutions,

$$\mathcal{X}$$

Objective function: Quality criterium

$$f:\mathcal{X}\to\mathbb{R}$$

#### Goal

Find the best solution according to the criterium

$$x^* = \operatorname{argmax} f$$

But, sometime, the set of all best solutions, good approximation of the best solution, good 'robust' solution...

#### Context

#### Black box Scenario

We have only  $\{(x_0, f(x_0)), (x_1, f(x_1)), ...\}$  given by an "oracle" No information is either not available or needed on the definition of objective function

- Objective function given by a computation, or a simulation
- Objective function can be irregular, non differentiable, non continous, etc.
- (Very) large search space for discrete case (combinatorial optimization), *i.e.* NP-complete problems
- Continuous problem, mixt optimization problem

## Real-world applications

## Typical applications

- Large combinatorial problems:
   Scheduling problems, planing problems, DOE,
   "mathematical" problems (Firing Squad Synchronization Pb.), etc.
- Calibration of models:

```
Physic world \Rightarrow Model(params) \Rightarrow Simulator(params)
Model(Params) = \operatorname{argmin}_{M} \operatorname{Error}(Data, M)
```

Shape optimization:

Design (shape, parameters of design) using a model and a numerical simulator

## Search algorithms

## Principle

## **Enumeration of the search space**

- A lot of ways to enumerate the search space
- Using random sampling: Monte Carlo technics
- Local search technics:



# Search algorithms



- Single solution-based: Hill-climbing technics,
   Simulated-annealing, tabu search, Iterative Local Search, etc.
- Population solution-based: Genetic algorithm, Genetic programming, ant colony algorithm, etc.

## Design components are well-known

- Probability to decrease,
- Memory of path, of sub-space
- Diversity of population, etc.

# Research question: Parameters tuning

- One Evolutionary Algorithm key point: Exploitation / Exploration tradeoff
- One main practical difficulty:
   Choose operators, design components, value of parameters, representation of solutions
- Parameters setting (Lobo et al. 2007):
  - Off-line before the run: parameter tuning,
  - On-line during the run: parameter control.

#### One practical and theoretical question

How to combine correctly the design components according to the problem (in distributed environment...) ?

# Research question: Expensive optimization

- Objective function based on a simulation: Expensive computation time
- One main practical difficulty:
   With few computation evaluation, choose operators, design components, value of parameters, ...
- Two main approaches:
  - Approximate objective function: surrogate model,
  - Parallel computation: distributed computing.

#### One practical and theoretical question

How to combine correctly the design components with low computational budget according to the problem in distributed environment...?

## How to solve a multi-criterium problem

#### Think about the decision problem!

- Define decision variables
- ② Define objective functions (criteria)
- Offine your goal: a priori, or a posteriori
- Use an (optimization) algorithm
- Analyze the result

# A priori goal

#### A priori decision

Decision maker knows what he/she wants before optimization

## Weighted sum

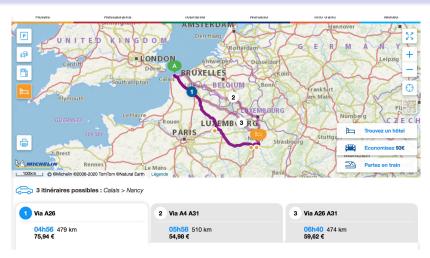
$$f_{\lambda}(x) = \lambda_1 f_1(x) + \ldots + \lambda_m f_m(x)$$

with  $\lambda_1 > 0$ 

- Basic model
- Often used technique
- Convert a multiobjective problem into a single-objective problem
- The definition, and the interpretation are not always straitforward

## Small example

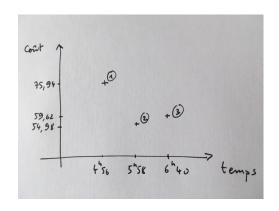
Road trip between Calais and Nancy



Which one is better?

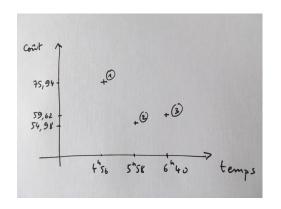
# Small example

Road trip between Calais and Nancy



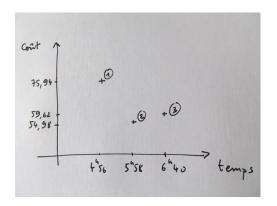
# Small example

Road trip between Calais and Nancy



- According to time objective, 1 is better
- According to cost objective, 2 is better
- But, 2 is better than 3 for both objectives.

## Pareto dominance



- 1 and 2 are incomparable
- 1 and 3 are incomparable
- 2 is better than 3

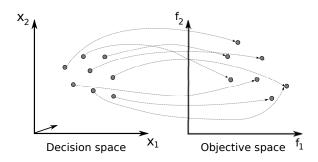
#### Pareto dominance

- 2 dominates 3
- 3 is dominated by 2

## Multiobjective optimization

#### Multiobjective optimization problem

- ullet  $\mathcal{X}$ : set of feasible solutions in the decision space
- $M \geqslant 2$  objective functions  $f = (f_1, f_2, \dots, f_M)$  (to maximize)
- $\mathcal{Z} = f(\mathcal{X}) \subseteq \mathbb{R}^M$ : set of feasible outcome vectors in the objective space

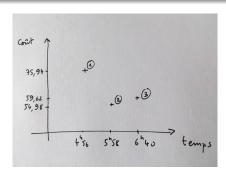


## Pareto dominance definition

## Pareto dominance relation (maximization)

A solution  $x \in \mathcal{X}$  dominates a solution  $x' \in \mathcal{X}$   $(x' \prec x)$  iff

- $\forall i \in \{1, 2, ..., M\}, f_i(x') \leqslant f_i(x)$
- $\exists j \in \{1, 2, ..., M\}$  such that  $f_j(x') < f_j(x)$

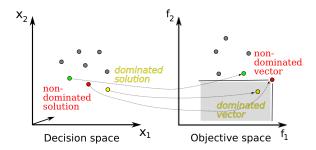


## Pareto Optimale solution

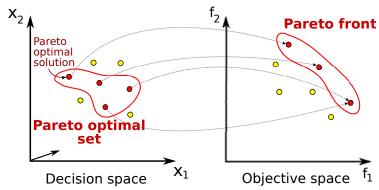
#### Definition: non-dominated solution

A solution  $x \in \mathcal{X}$  is non-dominated (or Pareto optimal, efficient) iff

$$\forall x' \in \mathcal{X} \setminus \{x\}, \ x \not\prec x'$$



## Pareto set, Pareto front





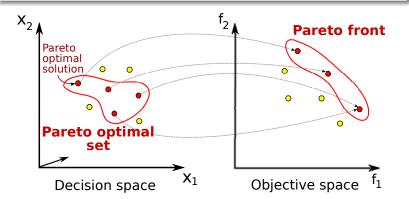
Vilfredo Pareto (1848 - 1923)

source: wikipedia

# Multiobjective optimization goal

#### Goal

Find the Pareto Optimal Set, or a good approximation of the Pareto Optimal Set And not a single solution for a single aggregated objective



# How to compute non dominated solutions from a set?

Filter by dominance relation with a basic algorithm: see exercice 2

```
Input: solution_set, the set of solutions to filter by dominance
Output: non_dominated_solutions, the set of non-dominated solutions
non dominated solutions \leftarrow \emptyset
for solution ∈ solution_set do
   s \leftarrow first solution of solution set
   while s \neq NULL \&\& solution is not dominated by s do
      s \leftarrow next solution of solution set
   end while
   if s = NUIII then
      non\_dominated\_solutions \leftarrow non\_dominated\_solutions \cup \{ solution \}
   end if
end for
return non_dominated_solutions
```

Time complexity:  $\mathcal{O}(m^2 \times d)$  where m is the size of solutions set, and d the dimension of objective space

# Challenges

- Search space: many variables, heterogeneous, dependent variables
- Objective space: many, heterogenous, expensive objective functions
- NP-completeness: deciding if a solution is Pareto optimal is difficult
- Intractability:
   number of Pareto optimal solutions grows exponentially
   with problem dimension

# Why multiobjective optimization?

## Position of multiobjective optimization: Decision making

- No a priori on the importance/weights of the different objectives
- a posteriori selection by a decision marker:
   Selection of one Pareto optimal solution after a deep study of the possible solutions.

# Methodology

#### Typical methodology with MO optimization

- Define decision variables
- ② Define all potential objective
- Opening constraints (soft/hard/objective)
- Choose/design a relevant multiobjective algorithm
- Search for an approximation of Pareto optimal solutions set
- Analyse/visualize the solutions set

Loop between 1 to 6...

## Multi-objective, many-objective optimization

## Approximative definition

- Multi-objective: 2, 3 or 4 objectives
- Many-objective: 4, 5 and more objectives

#### Number of Pareto optimal solutions

#### Suppose that:

- Probability to improve: p (for all objective),
- Objective are independent.

Probability to be non-dominated for M objectives is:

# Multi-objective, many-objective optimization

## Approximative definition

- Multi-objective: 2, 3 or 4 objectives
- Many-objective: 4, 5 and more objectives

#### Number of Pareto optimal solutions

#### Suppose that:

- Probability to improve: p (for all objective),
- Objective are independent.

Probability to be non-dominated for M objectives is:  $1 - (1 - p)^M$ 

# Multi-objective, many-objective optimization

## Approximative definition

- Multi-objective: 2, 3 or 4 objectives
- Many-objective: 4, 5 and more objectives

#### Number of Pareto optimal solutions

#### Suppose that:

- Probability to improve: p (for all objective),
- Objective are independent.

Probability to be non-dominated for M objectives is:  $1 - (1 - p)^M$ 

#### Intuitive goals

Convergence toward the front, and diversity of the solutions.

Many-objective: convergence "easy", diversity "hard"

Note: objective correlation is also important.

#### Performance assessment

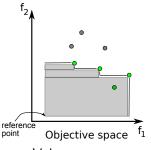
## Quality of the approximation of the Pareto front [1]

- Goal: indicator function related to the quality of the set.
- No universal indicator

#### Indicator functions

- Hypervolume indicator
- Epsilon indicator
- Inverted Generational Distance (IGD)
- Atteinment function

# Hypervolume $(I_H)$



Volume cover by the set.

#### **Properties**

 Compliant with the (weak) Pareto dominance relation

$$\rightarrow A \prec B \Rightarrow I_H(A) \leqslant I_H(B)$$

- A single parameter: the reference point
- Minimal solution-set maximizing  $I_H$   $\rightarrow$  subset of the Pareto optimal set  $\arg\max_{\sigma\in\Sigma}\ I_H(\sigma)$

# Slide to draw

# (additive) Epsilon indicator $(I_{\epsilon})$

#### Definition

Smallest coefficient  $\epsilon$  to translate the set A to "cover" each point of the set B

For maximization, minimal  $\epsilon$  value such that:

 $\forall z_b \in B, \exists z_a \in A \text{ such that } z_b \prec z_a + \epsilon$ 

#### **Properties**

 Compliant with the (weak) Pareto dominance relation (using Pareto front)

$$ightarrow A \prec B \Rightarrow I_{\epsilon}(A) \leqslant I_{\epsilon}(B)$$

• A parameter: the reference set

# Slide to draw

## Inverted Generational Distance (IGD)

#### Definition: Generational Distance (GD) of set A

Average over all solutions  $a \in A$  of the distance between solution a and the closest solution in a reference set R:

$$IG(A,R) = \frac{1}{|A|} \sum_{a \in A} \min_{r \in R} \operatorname{dist}(a,r)$$

where dist(a, r) is the euclidian distance in objective space between solution a, and r.

#### Definition: Inverted Generational Distance (IGD)

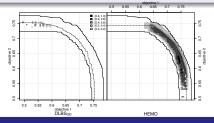
$$IGD(A, R) = IG(R, A)$$

# Slide to draw

## Atteinment function

#### Definition

Probability to reach a point in objective space



#### Tools

Empirical Attainment Function (EAF) Tools, Manuel López-Ibáñez: https://mlopez-ibanez.github.io/eaf/

Manuel López-Ibáñez, Luís Paquete, and Thomas Stützle. Exploratory Analysis of Stochastic Local Search Algorithms in Biobjective Optimization. In Experimental Methods for the Analysis of Optimization Algorithms, 2010.



Carlos M Fonseca, Joshua D Knowles, Lothar Thiele, and Eckart Zitzler.

A tutorial on the performance assessment of stochastic multiobjective optimizers.

In *Third International Conference on Evolutionary Multi-Criterion Optimization (EMO 2005)*, volume 216, page 240, 2005.