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Multiobjective Optimization MO algorithms

Single Objective Optimization

Inputs

Search space: Set of all feasible solutions,

X
Objective function: Quality criterium

f : X → IR

Goal

Find the best solution according to the criterium

x? = argmax f

But, sometime, the set of all best solutions, good approximation of
the best solution, good ’robust’ solution...
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Context

Black box Scenario

We have only {(x0, f (x0)), (x1, f (x1)), ...} given by an ”oracle”
No information is either not available or needed on the definition
of objective function

Objective function given by a computation, or a simulation

Objective function can be irregular, non differentiable, non
continous, etc.

(Very) large search space for discrete case (combinatorial
optimization), i.e. NP-complete problems

Continuous problem, mixt optimization problem
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Real-world applications

Typical applications

Large combinatorial problems:
Scheduling problems, planing problems, DOE,
”mathematical” problems (Firing Squad Synchronization

Pb.), etc.

Calibration of models:
Physic world ⇒ Model(params) ⇒ Simulator(params)

Model(Params) = argminM Error(Data,M)

Shape optimization:
Design (shape, parameters of design)
using a model and a numerical simulator
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Search algorithms

Principle

Enumeration of the search space

A lot of ways to enumerate the search space

Using random sampling: Monte Carlo technics

Local search technics:
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Search algorithms

Single solution-based: Hill-climbing technics,
Simulated-annealing, tabu search, Iterative Local Search, etc.

Population solution-based: Genetic algorithm, Genetic
programming, ant colony algorithm, etc.

Design components are well-known

Probability to decrease,

Memory of path, of sub-space

Diversity of population, etc.
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Research question: Parameters tuning

One Evolutionary Algorithm key point:
Exploitation / Exploration tradeoff

One main practical difficulty:
Choose operators, design components, value of parameters,

representation of solutions

Parameters setting (Lobo et al. 2007):

Off-line before the run: parameter tuning,
On-line during the run: parameter control.

One practical and theoretical question

How to combine correctly the design components
according to the problem (in distributed environment...) ?
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Research question: Expensive optimization

Objective function based on a simulation:
Expensive computation time

One main practical difficulty:
With few computation evaluation, choose operators, design

components, value of parameters, ...

Two main approaches:

Approximate objective function: surrogate model,
Parallel computation: distributed computing.

One practical and theoretical question

How to combine correctly the design components
with low computational budget

according to the problem in distributed environment... ?
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How to solve a multi-criterium problem

Think about the decision problem!

1 Define decision variables

2 Define objective functions (criteria)

3 Define your goal: a priori, or a posteriori

4 Use an (optimization) algorithm

5 Analyze the result
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A priori goal

A priori decision

Decision maker knows what he/she wants before optimization

Weighted sum

fλ(x) = λ1f1(x) + . . .+ λmfm(x)

with λi > 0

Basic model

Often used technique

Convert a multiobjective problem into a single-objective
problem

The definition, and the interpretation are not always
straitforward
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Small example
Road trip between Calais and Nancy

Which one is better ?
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Small example
Road trip between Calais and Nancy

According to time
objective, 1 is better

According to cost
objective, 2 is better

But, 2 is better than
3 for both objectives.
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Pareto dominance

1 and 2 are
incomparable

1 and 3 are
incomparable

2 is better than 3

Pareto dominance

2 dominates 3

3 is dominated by 2
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Multiobjective optimization

Multiobjective optimization problem

X : set of feasible solutions in the decision space

M > 2 objective functions f = (f1, f2, . . . , fM) (to maximize)

Z = f (X ) ⊆ IRM : set of feasible outcome vectors in the
objective space

Decision space

x2

x1 Objective space

f

f1

2
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Pareto dominance definition

Pareto dominance relation (maximization)

A solution x ∈ X dominates a solution x ′ ∈ X (x ′ ≺ x) iff

∀i ∈ {1, 2, . . . ,M}, fi (x ′) 6 fi (x)

∃j ∈ {1, 2, . . . ,M} such that fj(x
′) < fj(x)
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Pareto Optimale solution

Definition: non-dominated solution

A solution x ∈ X is non-dominated (or Pareto optimal, efficient) iff

∀x ′ ∈ X \ {x}, x 6≺ x ′

Decision space

x2

x1 Objective space

f

f1

2

non-
dominated
vector

non-
dominated 
solution

vector

dominated
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Pareto set, Pareto front

Decision space

x2

x1 Objective space

f

f1

2 Pareto front

Pareto optimal
set

Pareto
optimal
solution

Vilfredo Pareto (1848 - 1923)
source: wikipedia
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Multiobjective optimization goal

Goal

Find the Pareto Optimal Set,
or a good approximation of the Pareto Optimal Set
And not a single solution for a single aggregated objective

Decision space

x2

x1 Objective space

f

f1

2 Pareto front

Pareto optimal
set

Pareto
optimal
solution
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Challenges

Search space:
many variables, heterogeneous, dependent variables

Objective space:
many, heterogenous, expensive objective functions

NP-completeness:
deciding if a solution is Pareto optimal is difficult

Intractability:
number of Pareto optimal solutions grows exponentially

with problem dimension
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Methodology

Typical methodology with MO optimization

1 Define decision variables

2 Define all potential objective

3 Define constraints (hard/soft/objective)

4 Choose/design a relevant multiobjective algorithm

5 Search for an approximation of Pareto optimal solutions set

6 Analyse/visualize the solutions set

Loop between 1 to 6...
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Multi-objective optimization algorithms

Population-based algorithm

A Multi-Objective (MO) algorithm is an Evolutionary Algorithm :
the goal is to find a set of solutions

Evolutionary Multi-Objective (EMO) algorithm
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Main types of MO algorithms

Three main classes:

(1) Pareto-based approaches: directly or indirectly focus the
search on the Pareto dominance relation.

Pareto Local Search (PLS), Global SEMO, NSGA-II, etc.

(2) Indicator approaches: Progressively improvement the indicator
function: IBEA, SMS-MOEA, etc.

(3) Scalar approaches: multiple scalarized aggregations of the
objective functions: MOEA/D, etc.

Objective space

f

f1

2

Accept

No
accept

Objective space

f

f1

2
supported 
solution
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(1) Pareto-based approaches

EMO based on dominance relation to update set of solutions
(archive)

example of: Pareto Local Search (PLS)

Pick a random solution x0 ∈ X
A← {x0}
repeat

Select a non-visited x ∈ A
Create neighbors N(x) by flipping each bit of x in turns
Flag x as visited
A← non-dominated sol. from A ∪ N(x)

until all-visited ∨ maxeval

[Paquete et al. 2004][8]
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A Pareto-based approach: Pareto Local Search

• Archive solutions using Dominance relation
• Iteratively improve this archive by exploring the neighborhood

Objective space

f

f1

2

Accept neighbor

current
archive

Objective space

f

f1

2

No Accept

current
archive

Objective space

f

f1

2

Accept

current
archive

Objective space

f

f1

2

current
archive
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Pareto-based approaches : G-SEMO

local search:
Pareto Local Search (PLS)

Pick a random solution x0 ∈ X
A← {x0}
repeat

Select a non-visited x ∈ A
Create N(x) by flipping each bit

of x in turns
Flag x as visited
A← non-dom. from A ∪ N(x)

until all-visited ∨ maxeval

[Paquete et al. 2004][8]

global search:
Global-Simple EMO (G-SEMO)

Pick a random solution x0 ∈ X
A← {x0}
repeat

Select x ∈ A at random
Create x ′ by flipping each bit of

x with a rate 1/N

A← non-dom. from A ∪ {x ′}
until maxeval

[Laumanns et al. 2004][6]
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A Pareto-based approach: NSGA-II (Deb et al. 2000)

• No archive of solutions
• Classical EA based on crowding distance
• Replacement: elitist based on non-dominated sorting, and
crowding distance

Evolutionary Algorithm (EA)

repeat
selection(pop, children)
random variation(children)
replacement(pop, children)

until stoping criterium(pop)
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NSGA-II: non-dominated sorting, crowding distance

min

f

f1

2

m
in

Front 1

Front 2
Front 3

min

f

f1

2

m
in

i

i-1

i+1

• Selection:
binary tournament using sorting, and crowding distance
• Random variation:

crossover, mutation, etc.
• Replacement:

elitist based on non-dominated sorting, and crowding distance
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(2) Indicator-based approches

Single objective optimization at population level :

• Associate one indicator (scalar value) to each population
• Optimization of this indicator

Possible indicators: hypervolume, epsilon-indicator, etc.
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SMS-MOEA: S metric selection-MOEA
[Beume et al. 2007][1]

P ← initialization()
repeat

q ← Generate(P)
P ← Reduce(P ∪ {q})

until maxeval

Generate

Use random variation (mutation, etc.) to create one candidate solution

Reduction

Remove the worst solution according to non-dominated sorting, and S metric

A S-metric is an indicateur such hypervolume
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IBEA: Indicator-Based Evolutionary algorithm
[Zitzler et al. 2004][10]

P ← initialization()
repeat

P
′
← selection(P)

Q ← random variation(P
′
)

Evaluation of Q
P ← replacement(P, Q)

until maxeval

Fitness assignment

Pairwise comparison of solutions in a population w.r.t. indicator i

Fitness value: ”loss in quality” in the population P if x was removed

f (x) =
∑

x
′∈P\{x}

(−e−i(x
′
,x)/κ)

Often the ε-indicator is used
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(3) Decomposition based approaches: MOEA/D

Principe

Divide the multi-objective problem
into several single-objective sub-problems

Cooperation
between different single-objective sub-problems
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Original MOEA/D [9] (minimization)

/* µ sub-problems defined by µ directions */
(λ1, . . . , λµ)← initialization direction()
Initialize ∀i = 1..µ B(i) the neighboring sub-problems of sub-problem i
/* one solution for each sub-problem */

(x1, . . . , xµ)← initialization solution()
repeat

for i = 1..µ do
Select x and x

′
randomly in {xj : j ∈ B(i)}

y ← mutation crossover(x , x
′
)

for j ∈ B(i) do
if g(y |λj , z

?
j ) < g(xj |λj , z

?
j ) then

xj ← y
end if

end for
end for

until max eval

B(i) is the set of the T closest neighboring sub-problems of sub-problem i
g( |λi , z

?
i ): scalar function of sub-pb. i with λi direction, and z?i reference point
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MOEA/D steady-state variant

Another MOEA/D (minimization)

/* µ sub-problems defined by µ directions */
(λ1, . . . , λµ)← initialization direction()
Initialize ∀i = 1..µ B(i) the neighboring sub-problems of sub-problem i
/* one solution for each sub-problem */

(x1, . . . , xµ)← initialization solution()
repeat

Select i at random ∈ 1..µ
Select x randomly in {xj : j ∈ B(i)}
y ← mutation crossover(xi , x)
for j ∈ B(i) do

if g(y |λj , z
?
j ) < g(xj |λj , z

?
j ) then

xj ← y
end if

end for
until max eval
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Representation of steady-state MOEA/D
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Population at iteration t
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objective space: zi = g(xi |λi , z

?
i )

Same reference point for all
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Scalar function g :
Weighted Tchebycheff

Neighborhood size ]B(i) = T = 3
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Decomposition based approaches: MOEA/D

Main issues

1. Impact of the scalar function:
cf. Slide suivant et ppsn2014poster-impactScalarFunction.pdf

[Derbel et. al., 2014] [2]

2. Direction of search:
cf.[Derbel et. al., 2014] [3]

3. Cooperation between sub-problems:
cf. slides Nagano: 2014-06-19-nagano-moeadxy.pdf [Gauvain et al.,

2014] [7]

4. Parallelization:
cf. algorithm of ”A fine-grained message passing MOEA/D” [Derbel et

al., 2015] [4]

cf. [Drouet et al., 2021] [5]
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Scalar approaches: scalarizing function

• multiple scalarized aggregations of the objective functions

Objective space

f

f1

2
supported 
solution

Different aggregations

Weighted sum:

g(x |λ) =
∑

i=1..m

λi fi (x)

Weighted Tchebycheff:

g(x |λ, z) = max
i=1..m

{λi |zi − fi (x)|}

... cf. poster PPSN 2014
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Sébastien Verel.
Distributed localized bi-objective search.
European Journal of Operational Research, 239(3):731–743,
2014.

36/36



Multiobjective Optimization MO algorithms

Bilel Derbel, Arnaud Liefooghe, Gauvain Marquet, and
El-Ghazali Talbi.
A fine-grained message passing moea/d.
In Evolutionary Computation (CEC), 2015 IEEE Congress on,
pages 1837–1844. IEEE, 2015.

V. Drouet, J.-M. Do, and S. Verel.
OPTIMIZATION OF LOAD-FOLLOW OPERATIONS OF A
1300MW PRESSURIZED WATER REACTOR USING
EVOLUTIONNARY ALGORITHMS.
Gecco Conference, 2021.

Marco Laumanns, Lothar Thiele, and Eckart Zitzler.
Running time analysis of evolutionary algorithms on a
simplified multiobjective knapsack problem.
Nat Comput, 3(1):37–51, 2004.

Gauvain Marquet, Bilel Derbel, Arnaud Liefooghe, and
El-Ghazali Talbi.

36/36



Multiobjective Optimization MO algorithms

Shake them all!
In Parallel Problem Solving from Nature–PPSN XIII, pages
641–651. Springer, 2014.

L. Paquete, M. Chiarandini, and T. Stützle.
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