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Single Objective Optimization

@ Search space: Set of all feasible solutions,
X
@ Objective function: Quality criterium
f: X =R

Goal
Find the best solution according to the criterium

x* = argmax f

But, sometime, the set of all best solutions, good approximation of
the best solution, good 'robust’ solution...
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Context

Black box Scenario

We have only {(xo, f(x0)), (x1, f(x1)),...} given by an "oracle”
No information is either not available or needed on the definition

of objective function

@ Objective function given by a computation, or a simulation
@ Objective function can be irregular, non differentiable, non
continous, etc.

o (Very) large search space for discrete case (combinatorial
optimization), i.e. NP-complete problems

@ Continuous problem, mixt optimization problem
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Real-world applications

Typical applications

@ Large combinatorial problems:
Scheduling problems, planing problems, DOE,
"mathematical” problems (Firing Squad Synchronization
Pb.), etc.

o Calibration of models:
Physic world = Model(params) = Simulator(params)
Model(Params) = argmin,, Error(Data, M)

@ Shape optimization:
Design (shape, parameters of design)
using a model and a numerical simulator
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Search algorithms

Enumeration of the search space

@ A lot of ways to enumerate the search space

@ Using random sampling: Monte Carlo technics

@ Local search technics:

Neighborhood

% x ® Neighbor Initialization > ® .. Selection g °
Solution ® % P i °
[] % @ e o
® P %
)Y x®)
N z Replacement \ o s Random
Sl s X % X Variation
________ XX %
Accept? x Xx
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Search algorithms

Neighborhood

% u # Neighbor Initialization 3 . Se[ectlon
Solution % ®
o 2 ®
L v o%
N, %!
AN J Replacement \ & g x Random
N ey X % % Variation
—————————— XX x
Accept? Xy

@ Single solution-based: Hill-climbing technics,
Simulated-annealing, tabu search, Iterative Local Search, etc.

@ Population solution-based: Genetic algorithm, Genetic
programming, ant colony algorithm, etc.

Design components are well-known

@ Probability to decrease,

@ Memory of path, of sub-space

o Diversity of population, etc.
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Research question: Parameters tuning

@ One Evolutionary Algorithm key point:
Exploitation / Exploration tradeoff

@ One main practical difficulty:
Choose operators, design components, value of parameters,
representation of solutions
e Parameters setting (Lobo et al. 2007):

e Off-line before the run: parameter tuning,
e On-line during the run: parameter control.

One practical and theoretical question

How to combine correctly the design components
according to the problem (in distributed environment...) ?
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Research question: Expensive optimization

@ Objective function based on a simulation:
Expensive computation time
@ One main practical difficulty:
With few computation evaluation, choose operators, design
components, value of parameters, ...
@ Two main approaches:

e Approximate objective function: surrogate model,
o Parallel computation: distributed computing.

One practical and theoretical question

How to combine correctly the design components
with low computational budget
according to the problem in distributed environment... 7
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How to solve a multi-criterium problem

Think about the decision problem!
@ Define decision variables
@ Define objective functions (criteria)
© Define your goal: a priori, or a posteriori
Q Use an (optimization) algorithm
© Analyze the result
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A priori goal

A priori decision

Decision maker knows what he/she wants before optimization

Weighted sum
A(x) = AMA(x) 4+ ...+ Anfm(x)

with A\; >0
@ Basic model
o Often used technique
@ Convert a multiobjective problem into a single-objective
problem
@ The definition, and the interpretation are not always
straitforward
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Small example
Road trip between Calais and Nancy

Y | B Trouvez un hotel
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(5—s 3itinéraires possibles : Calais > Nancy

o\liam 2 Via A4 A31 3 Via A26 A31
04h56 479 km 05h58 510 km 06h40 474 km
7594 € 54,98 € 59,62 €
Which one is better ? )







Small example
Road trip between Calais and Nancy

@ According to time
objective, 1 is better

@ According to cost
objective, 2 is better

o But, 2 is better than
3 for both objectives.
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Pareto dominance

@ 1and 2 are
Gt /T incomparable

@ 1 and 3 are
gl | o incomparable

@ @ 2 is better than 3

Pareto dominance

e Al ;
b5 s e o {,Mr; @ 2 dominates 3

@ 3 is dominated by 2
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Multiobjective optimization

Multiobjective optimization problem

@ X: set of feasible solutions in the decision space
@ M > 2 objective functions f = (f1, f, ..., fp) (to maximize)

o Z = f(X) CRM: set of feasible outcome vectors in the
objective space

X,

> o

X1 Objective space 1

Decision space
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Pareto dominance definition

Pareto dominance relation (maximization)

A solution x € X dominates a solution x’ € X (x’ < x) iff
o Vie{l1,2,...,M}, fi(x) < fi(x)
e Jj€{1,2,..., M} such that fj(x") < fj(x)

Gt
15,94 +®
59,62 @ + @
54,98 i

[ T 14 6“ko (T&w\r}
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Pareto Optimale solution

Definition: non-dominated solution

A solution x € X' is non-dominated (or Pareto optimal, efficient) iff

Vx'e X\ {x}, x £ X

%2 2)
°
e e ° ® non-
° e . dominated
o dominatea e .o vector

o u
non- . . /
dominated I
solution

Decision space X Objective space fi
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Pareto set, Pareto front

X f
ZA I o Pareto front
Pareto - T

optimal

solution“0 o

~ O
Pareto optimal

set
Decision space ! Objective space fi

Vilfredo Pareto (1848 - 1923)

source: wikipedia

17/36



Multiobjective Optimization MO algorithms
000000000000 0000e00 0000000000000 000

Multiobjective optimization goal

Find the Pareto Optimal Set,
or a good approximation of the Pareto Optimal Set
And not a single solution for a single aggregated objective

X f
2A ‘ 2}

A Pareto front
Pareto

optimal
solution "0 o .

~ O
Pareto optimal.
set

Decision space Objective space
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Challenges

Search space:

many variables, heterogeneous, dependent variables
@ Objective space:
many, heterogenous, expensive objective functions

NP-completeness:
deciding if a solution is Pareto optimal is difficult

Intractability:
number of Pareto optimal solutions grows exponentially
with problem dimension
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Methodology

Typical methodology with MO optimization

@ Define decision variables

@ Define all potential objective

© Define constraints (hard/soft/objective)

© Choose/design a relevant multiobjective algorithm

© Search for an approximation of Pareto optimal solutions set

@ Analyse/visualize the solutions set

Loop between 1 to 6...

20/36



Multiobjective Optimization MO algorithms
0000000000000000000 ©000000000000000

Multi-objective optimization algorithms

Population-based algorithm

A Multi-Objective (MO) algorithm is an Evolutionary Algorithm :
the goal is to find a set of solutions

Initialization °® .. Selection ® o

Replacement x % Random

X Variation

X % X
xxxxa;
Evolutionary Multi-Objective (EMO) algorithm
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Main types of MO algorithms

Three main classes:

(1) Pareto-based approaches: directly or indirectly focus the

search on the Pareto dominance relation.
Pareto Local Search (PLS), Global SEMO, NSGA-II, etc.

(2) Indicator approaches: Progressively improvement the indicator
function: IBEA, SMS-MOEA, etc.

(3) Scalar approaches: multiple scalarized aggregations of the
objective functions: MOEA/D, etc.

supported
solution
L]

fi

Objective space f Objective space
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(1) Pareto-based approaches

EMO based on dominance relation to update set of solutions
(archive)

example of: Pareto Local Search (PLS)

Pick a random solution xp € X
A {Xo}
repeat
Select a non-visited x € A
Create neighbors N(x) by flipping each bit of x in turns
Flag x as visited
A < non-dominated sol. from AU N(x)
until all-visited V maxeval

[Paquete et al. 2004][8]
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A Pareto-based approach: Pareto Local Search

e Archive solutions using Dominance relation
e |teratively improve this archive by exploring the neighborhood

f2
L]
L] L]
L]
[e]
o ® o
]
]
current
archive °
Objective space f
1CZ f2
e
e o
L]
o
o L]
o © °
[] ]
o
current current
archive \o archive )

fi f

Objective space Objective space
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Pareto-based approaches : G-SEMO

local search: global search:
Pareto Local Search (PLS) Global-Simple EMO (G-SEMO)
Pick a random solution xo € X Pick a random solution xg € X
A {Xo} A {Xo}
repeat repeat
Select a non-visited x € A Select x € A at random
Create N(x) by flipping each bit Create x’ by flipping each bit of
of x in turns x with a rate 1/N
Flag x as visited
A < non-dom. from AU N(x) A < non-dom. from AU {x'}
until all-visited V maxeval until maxeval
[Paquete et al. 2004][8] [Laumanns et al. 2004][6]
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A Pareto-based approach: NSGA-II (Deb et al. 2000)

e No archive of solutions

e Classical EA based on crowding distance

e Replacement: elitist based on non-dominated sorting, and
crowding distance

Evolutionary Algorithm (EA)

repeat
selection(pop, children)
random_variation(children)
replacement(pop, children)
until stoping_criterium(pop)

26/36



Multiobjective Optimization MO algorithms
0000000000000000000 0000008000000000

NSGA-II: non-dominated sorting, crowding distance

f f
CZA o E“ (]
= 1S
E . i-1 °
(o) ) i °
° o ° i+1 o
OFront 1 (o)
b °
@ Front 2 o
O Front 3 o
minf; minf;
e Selection:

binary tournament using sorting, and crowding distance
e Random variation:

crossover, mutation, etc.
e Replacement:

elitist based on non-dominated sorting, and crowding distance
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NSGA-II: non-dominated sorting, crowding distance

Non-dominated Crowding
sorting distance
sorting
'1 E
B, 7y
F}
.
2 - Rejected
Ry

Figure: Non-dominated
Selection [Deb et al. 2000]

e Selection:

F(.l

.+_

Figure: Crowding
distance
[Deb et al. 2000]

binary tournament using sorting, and crowding distance

e Random variation:
crossover, mutation, etc.
e Replacement:

elitist based on non-dominated sorting, and crowding distance

27/36



Multiobjective Optimization MO algorithms
0000000000000000000 0000000800000000

(2) Indicator-based approches

Single objective optimization at population level :

e Associate one indicator (scalar value) to each population
e Optimization of this indicator

Possible indicators: hypervolume, epsilon-indicator, etc.
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SMS-MOEA: S metric selection-MOEA

[Beume et al. 2007][1]

P <+ initialization()
repeat

q < Generate(P)

P < Reduce(P U {q})
until maxeval

Generate

Use random variation (mutation, etc.) to create one candidate solution

Reduction

Remove the worst solution according to non-dominated sorting, and S metric

Algorithm 2. Reduce(Q)

1: {#1,...,R,} — fast-nondominated-sort(Q) /* all v fronts of Q */
2: 7 argmin, g [45(s, ;)] [* s € R, with lowest Ay (s, B,) */
3: return (Q\{r}) /* elimi detected element */

A S-metric is an indicateur such hypervolume
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IBEA: Indicator-Based Evolutionary algorithm
[Zitzler et al. 2004][10]

P <+ initialization()

repeat
P selection(P)
Q «+ random,variation(P/)
Evaluation of Q

P <+ replacement(P, Q)
until maxeval

Fitness assignment

@ Pairwise comparison of solutions in a population w.r.t. indicator i
@ Fitness value: "loss in quality” in the population P if x was removed
= 3 (e
x" eP\{x}

@ Often the e-indicator is used
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(3) Decomposition based approaches: MOEA/D

Divide the multi-objective problem
into several single-objective sub-problems

Cooperation
between different single-objective sub-problems
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Original MOEA/D [9] (minimization)

/* u sub-problems defined by p directions */

(AL, ..., A\") < initialization_direction()

Initialize Vi = 1..x B(i) the neighboring sub-problems of sub-problem i
/* one solution for each sub-problem */

(x*,...,x") < initialization_solution()
repeat
for i =1..u do

Select x and x randomly in {xi : jeB(i)}
y ¢ mutation_crossover(x, x,)
for j € B(i) do
if g(ylNi,z) <g(x|Ai,Zz") then
Xj <y
end if
end for
end for
until max_eval

B(i) is the set of the T closest neighboring sub-problems of sub-problem i
g( |\i, z7"): scalar function of sub-pb. i with \; direction, and z/ reference point
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MOEA/D steady-state variant

Another MOEA/D (minimization)

/* u sub-problems defined by p directions */
(AL, ..., A\*) < initialization_direction()
Initialize Vi = 1..u B(i) the neighboring sub-problems of sub-problem i
/* one solution for each sub-problem */
(x*,...,x") < initialization_solution()
repeat
Select i at random € 1.
Select x randomly in {x; : j € B(i)}
y  mutation_crossover(x;, x)
for j € B(i) do
if g(y|Ni,z) < g(x|\i,z) then
Xy
end if
end for
until max_eval
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Representation of steady-state MOEA /D

f2 A )\1 )\2

Z1 y4 )\i

o [0? @ One solution x; for each sub pb. 7

o i1 @ Representation of solutions in

0z objective space: zi = g(xi|\i, z")

Oz .

Zim @ Same reference point for all

281 A sub-pb. z* =z'=... = z;

Z, @ Scalar function g:

A o A Weighted Tchebycheff

? @ Neighborhood size #B(i) = T = 3
1

@ Minimization problem

Population at iteration t
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Representation of steady-state MOEA /D

f

2 A )\1 )\2 \
i-1
z1O OZZ I Aj @ Minimization problem
(2o Nt @ One solution x; for each sub pb. i
\¢ i
2 B\(I) @ Representation of solutions in
0z ..
\ZI\SZ:D objective space: z; = g(xi|\i, z)
o\ @ Same reference point for all
EA e sub-pb. z*¥ =z =... =z,
o%* Ay @ Scalar function g:
z - Weighted Tchebycheff
fl @ Neighborhood size §B(i) =T =3

From the neigh. B(/) of sub-pb. i,
Xit1 is selected
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Representation of steady-state MOEA /D

f2 A )\1 )\2

Z4 ZZ )\i . .
o0 @ One solution x; for each sub pb. /

@ Minimization problem

@ Representation of solutions in
objective space: zi = g(xi|\i, z")

i1 @ Same reference point for all
sub-pb. z* =z'=... = z;

Z, @ Scalar function g:
* H Weighted Tchebycheff

? @ Neighborhood size #B(i) = T = 3
1

The mutated solution y is created
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Representation of steady-state MOEA /D

@ Minimization problem
@ One solution x; for each sub pb. i

@ Representation of solutions in
objective space: z; = g(xi|\i, z)

@ Same reference point for all
*x % %
sub-pb. z" =z =... =z,

@ Scalar function g:
Weighted Tchebycheff

>
f ® Neighborhood size tB(i) = T = 3

According to scalar fonction,
y is worst than x;_1,
y is better than x; and replaces it.
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Representation of steady-state MOEA /D

*
f1
According to scalar fonction,

y is also better than xji1

and replaces it for the next iteration.

@ Minimization problem
@ One solution x; for each sub pb. i

@ Representation of solutions in

objective space: z; = g(xi|\i, z)

Same reference point for all
*x % %
sub-pb. z" =z =... =z,

Scalar function g:
Weighted Tchebycheff

Neighborhood size §B(i) = T =3
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Decomposition based approaches: MOEA/D

Main issues

1. Impact of the scalar function:
cf. Slide suivant et ppsn2014poster-impactScalarFunction.pdf
[Derbel et. al., 2014] [2]

2. Direction of search:
cf.[Derbel et. al., 2014] [3]

3. Cooperation between sub-problems:
cf. slides Nagano: 2014-06-19-nagano-moeadxy.pdf [Gauvain et al.,
2014] [7]
4. Parallelization:

cf. algorithm of " A fine-grained message passing MOEA/D" [Derbel et
al., 2015] [4]

cf. [Drouet et al., 2021] [5]
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Scalar approaches: scalarizing function

e multiple scalarized aggregations of the objective functions

Different aggregations

@ Weighted sum:

sur)ported
S0

Zoliion g(xI\) = ) Nifi(x)

i=1..m
_— o Weighted Tchebycheff:
Objective space fi g(X‘)\,Z) = ir—nla)fn{)\i‘Zi - f;(X)‘}

@ ... cf. poster PPSN 2014
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