MO algorithms

Multiobjective Optimization Algorithms

Sébastien Verel

LISIC Université du Littoral Côte d'Opale Equipe OSMOSE

verel@univ-littoral.fr http://www.lisic.univ-littoral.fr/~verel

Master informatique WeDSci, ULCO,

2021, version 0.1

Single Objective Optimization

Inputs • Search space: Set of all feasible solutions, \mathcal{X} • Objective function: Quality criterium $f: \mathcal{X} \to \mathbb{R}$

Goal

Find the best solution according to the criterium

 $x^\star = \operatorname{argmax}\, f$

But, sometime, the set of all best solutions, good approximation of the best solution, good 'robust' solution...

Context

Black box Scenario

We have only $\{(x_0, f(x_0)), (x_1, f(x_1)), ...\}$ given by an "oracle" No information is either not available or needed on the definition of objective function

- Objective function given by a computation, or a simulation
- Objective function can be irregular, non differentiable, non continous, etc.
- (Very) large search space for discrete case (combinatorial optimization), *i.e.* NP-complete problems
- Continuous problem, mixt optimization problem

Real-world applications

Typical applications

- Large combinatorial problems: Scheduling problems, planing problems, DOE, "mathematical" problems (Firing Squad Synchronization Pb.), etc.
- Calibration of models:

Physic world \Rightarrow Model(params) \Rightarrow Simulator(params) Model(Params) = $\operatorname{argmin}_M \operatorname{Error}(Data, M)$

• Shape optimization:

Design (shape, parameters of design) using a model and a numerical simulator

Search algorithms

Principle

Enumeration of the search space

- A lot of ways to enumerate the search space
- Using random sampling: Monte Carlo technics
- Local search technics:

Search algorithms

- Single solution-based: Hill-climbing technics, Simulated-annealing, tabu search, Iterative Local Search, etc.
- **Population solution-based**: Genetic algorithm, Genetic programming, ant colony algorithm, etc.

Design components are well-known

- Probability to decrease,
- Memory of path, of sub-space
- Diversity of population, etc.

Research question: Parameters tuning

- One Evolutionary Algorithm key point: Exploitation / Exploration tradeoff
- One main practical difficulty: Choose operators, design components, value of parameters, representation of solutions
- Parameters setting (Lobo et al. 2007):
 - Off-line before the run: parameter tuning,
 - On-line during the run: parameter control.

One practical and theoretical question

How to combine correctly the design components according to the problem (in distributed environment...) ?

Research question: Expensive optimization

- Objective function based on a simulation: Expensive computation time
- One main practical difficulty: With few computation evaluation, choose operators, design components, value of parameters, ...
- Two main approaches:
 - Approximate objective function: surrogate model,
 - Parallel computation: distributed computing.

One practical and theoretical question

How to combine correctly the design components with low computational budget according to the problem in distributed environment... ?

How to solve a multi-criterium problem

Think about the decision problem!

- Define decision variables
- ② Define objective functions (criteria)
- O Define your goal: a priori, or a posteriori
- Use an (optimization) algorithm
- Analyze the result

A priori goal

A priori decision

Decision maker knows what he/she wants before optimization

Weighted sum

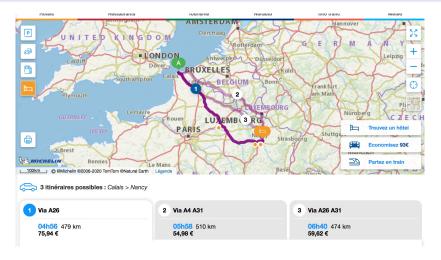
$$f_{\lambda}(x) = \lambda_1 f_1(x) + \ldots + \lambda_m f_m(x)$$

with $\lambda_i > 0$

- Basic model
- Often used technique
- Convert a multiobjective problem into a single-objective problem
- The definition, and the interpretation are not always straitforward

MO algorithms

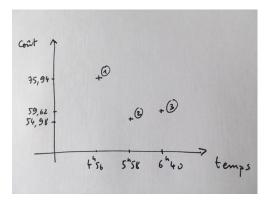
Small example Road trip between Calais and Nancy



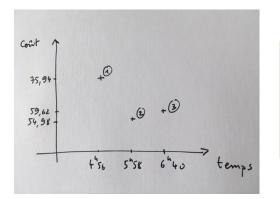
Which one is better ?

MO algorithms

Small example Road trip between Calais and Nancy

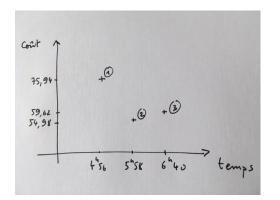


Small example Road trip between Calais and Nancy



- According to time objective, 1 is better
- According to cost objective, 2 is better
- But, 2 is better than 3 for both objectives.

Pareto dominance



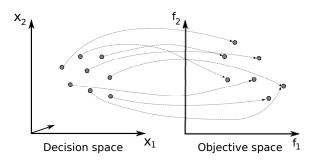
- 1 and 2 are incomparable
- 1 and 3 are incomparable
- 2 is better than 3

Pareto dominance

- 2 dominates 3
- 3 is dominated by 2

Multiobjective optimization problem

- \mathcal{X} : set of feasible solutions in the decision space
- $M \ge 2$ objective functions $f = (f_1, f_2, \dots, f_M)$ (to maximize)
- $\mathcal{Z} = f(\mathcal{X}) \subseteq \mathbb{R}^M$: set of feasible outcome vectors in the objective space

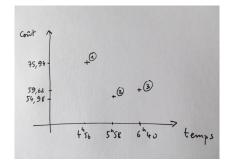


Pareto dominance definition

Pareto dominance relation (maximization)

A solution $x \in \mathcal{X}$ dominates a solution $x' \in \mathcal{X}$ $(x' \prec x)$ iff

- $\forall i \in \{1, 2, \ldots, M\}, f_i(x') \leq f_i(x)$
- $\exists j \in \{1, 2, \dots, M\}$ such that $f_j(x') < f_j(x)$

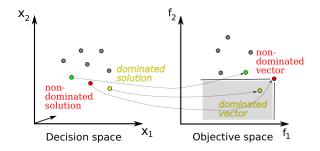


Pareto Optimale solution

Definition: non-dominated solution

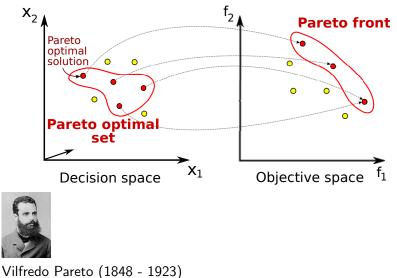
A solution $x \in \mathcal{X}$ is non-dominated (or Pareto optimal, efficient) iff

 $\forall x' \in \mathcal{X} \setminus \{x\}, \ x \not\prec x'$



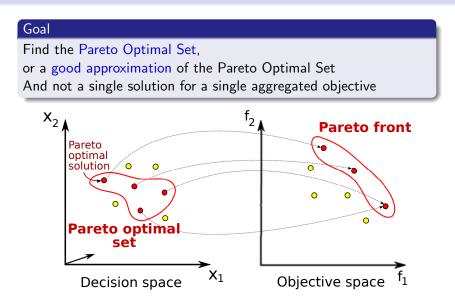
MO algorithms

Pareto set, Pareto front



source: wikipedia

Multiobjective optimization goal



Challenges

• Search space:

many variables, heterogeneous, dependent variables

Objective space:

many, heterogenous, expensive objective functions

• NP-completeness:

deciding if a solution is Pareto optimal is difficult

• Intractability:

number of Pareto optimal solutions grows exponentially with problem dimension

Methodology

Typical methodology with MO optimization

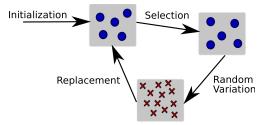
- Define decision variables
- ② Define all potential objective
- Optime constraints (hard/soft/objective)
- Choose/design a relevant multiobjective algorithm
- Search for an approximation of Pareto optimal solutions set
- Analyse/visualize the solutions set

Loop between 1 to 6...

Multi-objective optimization algorithms

Population-based algorithm

A Multi-Objective (MO) algorithm is an Evolutionary Algorithm : the goal is to find a set of solutions



Evolutionary Multi-Objective (EMO) algorithm

Main types of MO algorithms

Three main classes:

- Pareto-based approaches: directly or indirectly focus the search on the Pareto dominance relation.
 Pareto Local Search (PLS), Global SEMO, NSGA-II, etc.
- (2) Indicator approaches: Progressively improvement the indicator function: IBEA, SMS-MOEA, etc.
- (3) Scalar approaches: multiple scalarized aggregations of the objective functions: MOEA/D, etc.



(1) Pareto-based approaches

EMO based on dominance relation to update set of solutions (archive)

example of: Pareto Local Search (PLS)

```
Pick a random solution x_0 \in X

A \leftarrow \{x_0\}

repeat

Select a non-visited x \in A

Create neighbors N(x) by flipping each bit of x in turns

Flag x as visited

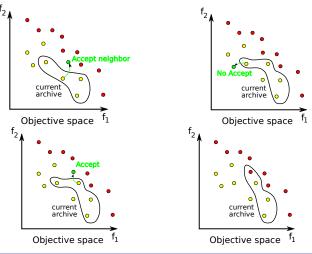
A \leftarrow non-dominated sol. from A \cup N(x)

until all-visited \lor maxeval
```

[Paquete et al. 2004][8]

A Pareto-based approach: Pareto Local Search

- Archive solutions using **Dominance relation**
- Iteratively improve this archive by exploring the neighborhood



Pareto-based approaches : G-SEMO

local search: Pareto Local Search (PLS)

Pick a random solution $x_0 \in X$ $A \leftarrow \{x_0\}$ repeat Select a non-visited $x \in A$ Create N(x) by flipping each bit of x in turns Flag x as visited $A \leftarrow$ non-dom. from $A \cup N(x)$ until all-visited \lor maxeval

[Paquete et al. 2004][8]

global search: Global-Simple EMO (G-SEMO)

Pick a random solution $x_0 \in X$ $A \leftarrow \{x_0\}$ repeat Select $x \in A$ at random Create x' by flipping each bit of x with a rate 1/N

 $A \leftarrow$ non-dom. from $A \cup \{x'\}$ until maxeval

[Laumanns et al. 2004][6]

A Pareto-based approach: NSGA-II (Deb et al. 2000)

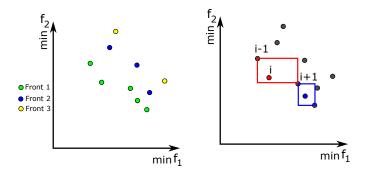
- No archive of solutions
- Classical EA based on crowding distance
- Replacement: elitist based on non-dominated sorting, and crowding distance

Evolutionary Algorithm (EA)

repeat

selection(pop, children)
random_variation(children)
replacement(pop, children)
until stoping_criterium(pop)

NSGA-II: non-dominated sorting, crowding distance



• Selection:

binary tournament using sorting, and crowding distance

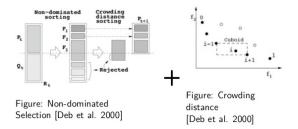
• Random variation:

crossover, mutation, etc.

• Replacement:

elitist based on non-dominated sorting, and crowding distance

NSGA-II: non-dominated sorting, crowding distance



• Selection:

binary tournament using sorting, and crowding distance

• Random variation:

crossover, mutation, etc.

• Replacement:

elitist based on non-dominated sorting, and crowding distance

(2) Indicator-based approches

Single objective optimization at population level :

- Associate one indicator (scalar value) to each population
- Optimization of this indicator

Possible indicators: hypervolume, epsilon-indicator, etc.

MO algorithms

SMS-MOEA: *S* metric selection-MOEA [Beume *et al.* 2007][1]

 $P \leftarrow$ initialization() **repeat** $q \leftarrow$ Generate(P) $P \leftarrow$ Reduce($P \cup \{q\}$) **until** maxeval

Generate

Use random variation (mutation, etc.) to create one candidate solution

Reduction

Remove the worst solution according to non-dominated sorting, and ${\cal S}$ metric

/* all v fronts of Q */ /* $s \in \mathscr{R}_v$ with lowest $\Delta_{\mathscr{S}}(s, \mathscr{R}_v)$ */ /* eliminate detected element */

A \mathcal{S} -metric is an indicateur such hypervolume

MO algorithms

IBEA: Indicator-Based Evolutionary algorithm [Zitzler *et al.* 2004][10]

 $\begin{array}{l} P \leftarrow \text{initialization()} \\ \textbf{repeat} \\ P^{'} \leftarrow \text{selection}(P) \\ Q \leftarrow \text{random_variation}(P^{'}) \\ \text{Evaluation of } Q \\ P \leftarrow \text{replacement}(P, Q) \\ \textbf{until maxeval} \end{array}$

Fitness assignment

- Pairwise comparison of solutions in a population w.r.t. indicator i
- Fitness value: "loss in quality" in the population P if x was removed

$$f(x) = \sum_{x' \in P \setminus \{x\}} (-e^{-i(x',x)/\kappa})$$

• Often the ϵ -indicator is used

(3) Decomposition based approaches: MOEA/D

Principe

Divide the multi-objective problem into several single-objective sub-problems

Cooperation

between different single-objective sub-problems

Original MOEA/D [9] (minimization)

```
/* \mu sub-problems defined by \mu directions */
(\lambda^1, \ldots, \lambda^{\mu}) \leftarrow \text{initialization\_direction}()
Initialize \forall i = 1..\mu B(i) the neighboring sub-problems of sub-problem i
/* one solution for each sub-problem */
(x^1, \ldots, x^{\mu}) \leftarrow initialization\_solution()
repeat
   for i = 1..\mu do
       Select x and x' randomly in \{x_j : j \in B(i)\}
       y \leftarrow \text{mutation\_crossover}(x, x')
       for i \in B(i) do
           if g(y|\lambda_i, z_i^{\star}) < g(x_i|\lambda_i, z_i^{\star}) then
              x_i \leftarrow y
           end if
       end for
   end for
until max eval
```

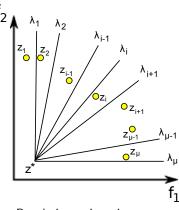
B(i) is the set of the T closest neighboring sub-problems of sub-problem i $g(|\lambda_i, z_i^*)$: scalar function of sub-pb. i with λ_i direction, and z_i^* reference point

MOEA/D steady-state variant

Another MOEA/D (minimization)

```
/* \mu sub-problems defined by \mu directions */
(\lambda^1, \ldots, \lambda^\mu) \leftarrow \text{initialization\_direction}()
Initialize \forall i = 1..\mu B(i) the neighboring sub-problems of sub-problem i
/* one solution for each sub-problem */
(x^1, \ldots, x^{\mu}) \leftarrow initialization\_solution()
repeat
   Select i at random \in 1..\mu
   Select x randomly in \{x_i : i \in B(i)\}
   y \leftarrow \text{mutation\_crossover}(x_i, x)
   for j \in B(i) do
       if g(y|\lambda_i, z_i^*) < g(x_i|\lambda_i, z_i^*) then
          x_i \leftarrow y
       end if
   end for
until max_eval
```

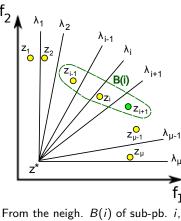
Representation of steady-state MOEA/D



Population at iteration t

- Minimization problem
- One solution x_i for each sub pb. i
- Representation of solutions in objective space: z_i = g(x_i|λ_i, z^{*}_i)
- Same reference point for all sub-pb. z^{*} = z₁^{*} = ... = z_µ^{*}
- Scalar function g: Weighted Tchebycheff
- Neighborhood size #B(i) = T = 3

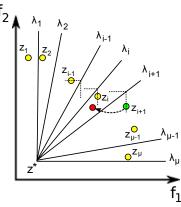
Representation of steady-state MOEA/D



 x_{i+1} is selected

- Minimization problem
- One solution x_i for each sub pb. i
- Representation of solutions in objective space: $z_i = g(x_i | \lambda_i, z_i^*)$
- Same reference point for all sub-pb. $z^* = z_1^* = \ldots = z_u^*$
- Scalar function g: Weighted Tchebycheff
- Neighborhood size #B(i) = T = 3

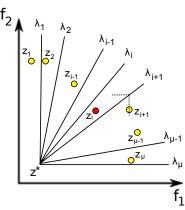
Representation of steady-state MOEA/D



The mutated solution y is created

- Minimization problem
- One solution x_i for each sub pb. i
- Representation of solutions in objective space: z_i = g(x_i|λ_i, z^{*}_i)
- Same reference point for all sub-pb. z^{*} = z₁^{*} = ... = z_µ^{*}
- Scalar function g: Weighted Tchebycheff
- Neighborhood size #B(i) = T = 3

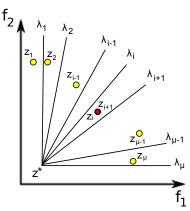
Representation of steady-state MOEA/D



According to scalar fonction, y is worst than x_{i-1} , y is better than x_i and replaces it.

- Minimization problem
- One solution x_i for each sub pb. i
- Representation of solutions in objective space: z_i = g(x_i|λ_i, z^{*}_i)
- Same reference point for all sub-pb. z^{*} = z₁^{*} = ... = z_µ^{*}
- Scalar function g: Weighted Tchebycheff
- Neighborhood size #B(i) = T = 3

Representation of steady-state MOEA/D



According to scalar fonction, y is also better than x_{i+1} and replaces it for the next iteration.

- Minimization problem
- One solution x_i for each sub pb. i
- Representation of solutions in objective space: z_i = g(x_i|λ_i, z^{*}_i)
- Same reference point for all sub-pb. z^{*} = z₁^{*} = ... = z_µ^{*}
- Scalar function g: Weighted Tchebycheff
- Neighborhood size #B(i) = T = 3

Decomposition based approaches: MOEA/D

Main issues

1. Impact of the scalar function:

cf. Slide suivant et ppsn2014poster-impactScalarFunction.pdf [Derbel et. al., 2014] [2]

2. Direction of search:

cf.[Derbel et. al., 2014] [3]

3. Cooperation between sub-problems:

cf. slides Nagano: 2014-06-19-nagano-moeadxy.pdf [Gauvain *et al.*, 2014] [7]

4. Parallelization:

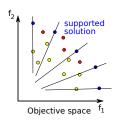
cf. algorithm of "A fine-grained message passing MOEA/D" [Derbel et al., 2015] [4]

cf. [Drouet et al., 2021] [5]

MO algorithms

Scalar approaches: scalarizing function

• multiple scalarized aggregations of the objective functions



Different aggregations

• Weighted sum:

$$g(x|\lambda) = \sum_{i=1..m} \lambda_i f_i(x)$$

• Weighted Tchebycheff:

$$g(x|\lambda,z) = \max_{i=1..m} \{\lambda_i | z_i - f_i(x)|\}$$

• ... cf. poster PPSN 2014

Nicola Beume, Boris Naujoks, and Michael Emmerich. Sms-emoa: Multiobjective selection based on dominated hypervolume.

European Journal of Operational Research, 181(3):1653–1669, 2007.

Bilel Derbel, Dimo Brockhoff, Arnaud Liefooghe, and Sébastien Verel.

On the impact of multiobjective scalarizing functions. In *Parallel Problem Solving from Nature–PPSN XIII*, pages 548–558. Springer, 2014.

Bilel Derbel, Jérémie Humeau, Arnaud Liefooghe, and Sébastien Verel.

Distributed localized bi-objective search.

European Journal of Operational Research, 239(3):731–743, 2014.

Bilel Derbel, Arnaud Liefooghe, Gauvain Marquet, and El-Ghazali Talbi. A fine-grained message passing moea/d. In Evolutionary Computation (CEC), 2015 IEEE Congress on,

pages 1837–1844. IEEE, 2015.

V. Drouet, J.-M. Do, and S. Verel. OPTIMIZATION OF LOAD-FOLLOW OPERATIONS OF A 1300MW PRESSURIZED WATER REACTOR USING EVOLUTIONNARY ALGORITHMS.

Gecco Conference, 2021.

- Marco Laumanns, Lothar Thiele, and Eckart Zitzler. Running time analysis of evolutionary algorithms on a simplified multiobjective knapsack problem. *Nat Comput*, 3(1):37–51, 2004.

Gauvain Marquet, Bilel Derbel, Arnaud Liefooghe, and El-Ghazali Talbi.

Shake them all!

In *Parallel Problem Solving from Nature–PPSN XIII*, pages 641–651. Springer, 2014.

L. Paquete, M. Chiarandini, and T. Stützle. Pareto local optimum sets in the biobjective traveling salesman problem: An experimental study.

In *Metaheuristics for Multiobjective Optimisation*, volume 535 of *Lecture Notes in Economics and Mathematical Systems*, chapter 7, pages 177–199. Springer, 2004.

🔋 Qingfu Zhang and Hui Li.

Moea/d: A multiobjective evolutionary algorithm based on decomposition.

Evolutionary Computation, IEEE Transactions on, 11(6):712–731, 2007.

Eckart Zitzler and Simon Künzli.

Indicator-based selection in multiobjective search.

MO algorithms

In *Parallel Problem Solving from Nature-PPSN VIII*, pages 832–842. Springer, 2004.