Introduction to optimization and machine learning Lesson 3 : basis of machine learning

Sébastien Verel

Laboratoire d'Informatique, Signal et Image de la Côte d'opale (LISIC) Université du Littoral Côte d'Opale, Calais, France http://www-lisic.univ-littoral.fr/~verel/

April, 2021

General outline

- Introduction to optimization problems
- Introduction to machine learning
- Fundamentals of optimization methods
- Fundamentals of machine learning methods
- Practice of some algorithms using python

Outline of the day

- Linear regression methods (supervised learning)
- Classification : decision tree
- Non-supervised classification
- Ensemble methods : random forest, gradient boosting

Bibliography

- Data Science : fondamentaux et études de cas, Machine Learning avec Python et R , Eric Biernat, Michel Lutz, Eyrolles, 2015.
- Artificial Intelligence : A Modern Approach, Fourth edition, 2020, Stuart Russell and Peter Norvig.
- Vincent Barra, Antoine Cornuéjols, Laurent Miclet, "Apprentissage Artificiel. Concepts et algorithmes. De Bayes et Hume au Deep learning" Eyrolles. Mars 2021. 990 pages.

Machine Learning

E : set of all possible tasks.
S : a system (a machine)
A more formal definition [T.M. Mitchell, 1997]
$T \subset E$: set of tasks called training set
$P: \mathcal{S} \times E \rightarrow \mathbb{R}$: performance metric of a system on tasks.
A system S learns from an experience Exp if the performance of S on tasks T, measured by P, is improving. $P\left(S_{\text {before Exp }}, T\right) \leq P\left(S_{\text {after Exp }}, T\right)$

Example

Task T: Classifier of emails during one day
Performance P : rejection rate of spams by S
Experience Exp : 1 weak of emails from users

Data type

- Quantitative data
mesurable quantity, answer to "how much ?"
allow computation (mean, etc.),
comparaisons (equality, difference, inferior/superior)
- Numerical : $\in \mathbb{R}$
- Discrete : number of values are limited
- Qualitative data
quality or features
answer to the "category"
- Nominale (categorial), ex : eyes color comparison (equality / difference)
- Ordinal

Order between elements (degree to test, etc.) comparison : superior / inférior

- Structured data
relations, etc.
- Tree, graph, complex data, etc.

Typology according to available information

- Supervised learning :

Learn from a set of examples :

$$
\left\{\left(x_{i}, y_{i}\right) \mid i \in 1 . . n\right\}
$$

- Non-supervised learning :

Learn from a set of example without labels (cf. clustering)

$$
\left\{x_{i} \mid i \in 1 . . n\right\}
$$

- Semi-supervised learning :

Learn from a set of examples with, and without labels

- Reinforcement learning :

Learn when the actions on environment are rewarded by a score

Typology according to data

- Regression : $\left(x_{i}, y_{i}\right)$ with $y_{i} \in \mathbb{R}$

- Classification : $\left(x_{i}, y_{i}\right)$ with y_{i} discrete

Univariate linear regression

Definition of the model

$$
\text { input value } x \quad \xrightarrow{\text { model } h} \text { output value } y
$$

With univariate linear regression :

$$
h_{\theta}(X)=\theta_{0}+\theta_{1} X
$$

Find parameter θ such that $h_{\theta}(X)$ is the closest to Y

Mean square error function

$$
J(\theta)=\frac{1}{2 m} \sum_{i=1}^{m}\left(h_{\theta}\left(x_{i}\right)-y_{i}\right)^{2}
$$

Gradient descent : $\theta_{j}:=\theta_{j}-\alpha \frac{\partial}{\partial \theta_{j}} J(\theta)$

Multivariate linear regression

Definition of the model

input value $x \quad \xrightarrow{\text { model } h}$ output value y

With multivariate linear regression :

$$
h_{\theta}(X)=\theta_{0}+\theta_{1} X_{1}+\theta_{2} X_{2}+\ldots+\theta_{n} X_{n}
$$

Mean square error function

$$
J(\theta)=\frac{1}{2 m} \sum_{i=1}^{m}\left(h_{\theta}\left(x_{i}\right)-y_{i}\right)^{2}
$$

Gradient descent : $\theta_{j}:=\theta_{j}-\alpha \frac{\partial}{\partial \theta_{j}} J(\theta)$
Normalization (scaling) of the predictors : reduced centered variable $\left(\mu=0, \sigma^{2}=1\right)$

Practice with scikit-learn

Scikit-learn is a library in python with MLmodels, and related tools. Open source, BSD license, https://scikit-learn.org/

```
From example Ordinary Least Square
from sklearn import linear_model
reg = linear_model.LinearRegression()
reg.fit ([[0, 0], [1, 1], [2, 2]], [0, 1, 2])
print(reg.coef_)
```

see code: linear_reg.ipynb and url :
https://scikit-learn.org/stable/auto_examples/linear_
model/plot_ols.html\#
sphx-glr-download-auto-examples-linear-model-plot-ols-py

Polynomial regression

Definition of the model

With polynomial linear regression :

$$
h_{\theta}(X)=\theta_{0}+\theta_{1} X_{1}+\theta_{2} X_{2}+\theta_{3} X_{1}^{2}+\theta_{4} X_{2}^{2}+\theta_{5} X_{1} X_{2}+\ldots
$$

Mean square error function

$$
J(\theta)=\frac{1}{2 m} \sum_{i=1}^{m}\left(h_{\theta}\left(x_{i}\right)-y_{i}\right)^{2}
$$

Linear regression is simple, and fun, but...

Errors of models

Relation between errors

- Learning error : error rate on the training set
- "True" error : error rate on the all possible examples

Overfitting

Too much learning on training

Over-fitting of the model on the training set
\Rightarrow Loss of generalization capacity
\approx Learning "by heart"

Complexity metrics such as the polynomial degree

Overfitting : bias-variance tradeoff

- Error from the bias : difference between predictions and true values
- Erreur from the variance : variability of the prediction for one given data x

Source Scott Fortmann-Roe :
http://scott.fortmann-roe.com/docs/BiasVariance.html

Goodness of fit: Coefficient of determination

Definition

$$
R^{2}=1-\frac{\text { Variance of the residus }}{\text { Variance of the data }}
$$

with residus : $r_{i}=h_{\theta}\left(x_{i}\right)-y_{i}$

Evaluation of a model quality

Technique

Partitionning the set into:

- Training set ($\approx 70 \%$)
- Test set, independent one ($\approx 30 \%$)

The error rate can be estimated without bias on the test set.

Drawback

- An initial large set is requiered
- Dilemma :
- The larger the test set, the better the estimation is
- The larger the training set, the better the model is

Resampling method

Allow to estimate the generalization error

K-folds cross-validation

Partition randomly the set into K blocks
For each blok k,
Design a model using the $k-1$ other training blocks
Compute the test error e_{k} on the block k
Compute the mean of errors e_{k}

Other techniques :

- Leave-one-out ($K=n$)
- Bootstrap, bagging, etc.

Exercice

See example in scikit-learn " Underfitting vs. Overfitting" :
Polynomial regression of $f(x)=\cos \left(\frac{3 \pi}{2} x\right)$ with polynomial of degree 1, 4, and 10
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import PolynomialFeatures from sklearn.linear_model import LinearRegression
polynomial_features = PolynomialFeatures(degree=degrees[i], include_bias=False)
linear_regression = LinearRegression()
pipeline = Pipeline([
("polynomial_features", polynomial_features),
("linear_regression", linear_regression)])
pipeline.fit(X[:, np.newaxis], y)

Sparse approach : regulization methods

Objective function (nota : penalty approach)

$$
J(\theta)=L(\theta)+\Omega(\theta)
$$

- $L(\theta)$: training error,
distance between data and prediction of the model
- $\Omega(\theta)$: regularization, cost of the model complexity

Goal of sparse mode

Reduce the complexity of the model in order to reduce the variance of prediction, and to reduce the generalization error.

Regularization : model complexity metrics

- Norme $L_{2}: \Omega(\omega)=\lambda\|\omega\|^{2}=\lambda \sum_{i=1}^{n} \omega_{i}^{2}$
- Norme $L_{1}: \Omega(\omega)=\lambda\|\omega\|_{1}=\lambda \sum_{i=1}^{n}\left|\omega_{i}\right|$

Regularization methods

Ridge :

$$
J(\theta)=L(\theta)+\lambda \sum_{i=1} \theta_{j}^{2}
$$

Lasso :

$$
J(\theta)=L(\theta)+\lambda \sum_{i=1}\left|\theta_{j}\right|
$$

ElasticNet :

$$
J(\theta)=L(\theta)+\lambda \sum_{i=1}\left((1-\alpha) \theta_{j}^{2}+\alpha\left|\theta_{j}\right|\right)
$$

Warnings : parameters tuning
(use cross-validation to select relevant parameter values)
See also : forward/backward selection, LARS, dropout, etc. Indeed, the selection of a model is also an optimization problem that combined combinatorial, and numerical optimization !...

Binary classifier

Goal

Find a function : $f(x) \in\{0,1\}$

Approach

Transform the model h into a binary response :

$$
r(x)= \begin{cases}0 & \text { si } h(x)<0.5 \\ 1 & \text { si } h(x) \geqslant 0.5\end{cases}
$$

The model h is interpreted as probability function :

$$
h(x) \in[0,1], \text { and } h(x)=\operatorname{Pr}(y=1 \mid x) .
$$

Sigmoid fonctions

Transform a real number from \mathbb{R} into $[0,1]$ using ;

- hyperbolic tangent, inverse of normal density, logistic function

Logistic regression

Model : linear model composed with logistic function
$h_{\theta}(X)=g\left(\theta_{0}+\theta_{1} X_{1}+\theta_{2} X_{2} \ldots+\theta_{n} X_{n}\right)$ with g logistic function

Loss function : cross-entropy

$j(h, y)=-\operatorname{Pr}(y=1) \log \operatorname{Pr}(h=1)-\operatorname{Pr}(y=0) \log \operatorname{Pr}(h=0)$ which gives :

$$
j(h(x), y)=-y \log (h(x))-(1-y) \log (1-h(x))
$$

$$
J(\theta)=\frac{1}{m} \sum_{i=1}^{m} j\left(h_{\theta}\left(x_{i}\right), y_{i}\right)
$$

Multiclass case

Goal
Find a function : $f(x) \in\{0,1, \ldots, k\}$

- For each class c, we build a binary classifier $h^{(c)}$ which measures the probability $y \in c$ (and $y \notin c$)
- The predicted class is the class with the highest probability :

$$
y^{\text {pred }}=\operatorname{argmax}_{c \in C} h^{(c)}(x)
$$

Decision tree classifier

One of the most explainable ML model

if Outlook $=$ " overcast" and Humidity $=\ldots$ then playball $=$ Yes
Compact way to represent a set of inference relations

Learning algorithm

Learning with decision tree

Design a tree :

- Nodes : select one attribute (decision variable X_{j}) as label, the edges are labelled by the value of the attributes
- Leaves: cut the tree with target attribute y

Targeted quality of the tree

- Low error rate
- Low generalization error
- Small tree in order to be explainable
- etc.

Learning algos: ID3, C4.5, CART, CHAID, evolutionary algo., etc.

One classical learning approach

Top-down approach (binary tree)

function buildTree (X)
if all examples of X are in the same class, or $\operatorname{stop}(X)$ then
Create a leaf with the label of examples
else
Select one attribute to create a node
Positive, and negative values in X create two sets X_{0} et X_{1} buildTree (X_{0})
buildTree $\left(X_{1}\right)$
end if

One classical learning approach

Greedy top-down approach

For each node,

- Select the best attribute according to a metric on X

Recursive call until :

- All examples are in the same class
- A new partitioning does not improve the prediction quality
- Top-down : from root node
- Greedy approach : best "local" choice without backtrack Beware of local optima...

Pros, and cons decision tree

Pros

- Easy to understand: explainable IA
- White-box model (neural net. is black-box)
- Data preparation is minimal : no scaling, etc.
- Numerical, and categorial data are possible
- Robust to outliers

Cons

- Learning a decision tree is NP-complet
- Greedy approach is sub-optimal
- Complex tree, overfitting
- Bias toward small tree, attribute with more values, etc.
- Interaction between is difficult to detect
- Problems are difficult to learn with tree (xor, parity, multiplexer)

Top-down greedy algorithm based on information gain

Principle

(1) Compute entropy of all attributes X_{j} using training set X
(2) Select the attribute with maximum information gain
(3) Partitionning the set X
(9) Recursive call on each subset of attribute values X_{0}, X_{1}, \ldots

Entropy metric

Entropy H

Quantity of information (disorder) of a set

$$
H(X)=-\sum_{s \in D_{X}} p(s) \log _{2} p(s)
$$

- X : data set
- D_{X} : set of classes y of X
- $p(s)$: proportion of class $s \in D_{X}$ in X

When $H(X)=0, X$ is perfectly classified.

Information Gain

Mutual Information (cross-entropy)

Measure the joint information of 2 random variables (information one variable from the other one)

$$
I(S, T)=-\sum_{s \in D_{s, t \in D_{T}}} p(s, t) \log _{2} \frac{p(s, t)}{p(s) p(t)}
$$

Information gain (- mutual information)

Measure the entropy difference before, and after the partitionning

$$
I G(S, T)=-I(S, T)=H(S)-\sum_{t} p\left(S_{t}\right) H\left(S_{t}\right)
$$

- $T=\left\{S_{1}, \ldots\right\}$ partitionning of $S=\cup_{t} S_{t}$
- $p\left(S_{t}\right)=\sharp S_{t} / \sharp S$
- $H(S), H\left(S_{t}\right)$: entropies of S, and S_{t}

Pseudo code

ID3(examples, target, attributes) :
if attributes is empty then
return a leaf the most frequent label
elseif all examples are positive (resp. negatives) then
return a leaf positive label (resp. negative)
else
$A \leftarrow$ attribute the highest information gain
create a node with label A
for each values v_{i} of A
add a branch v_{i} to the node
ID3(examples $\left(A=v_{i}\right)$, target, attributs $-A$)

C4.5 algorithm

Ross Quinlan, 1993

Improvement of ID3

- Use the information gain ratio instead of IG :
$I G(S, T)$ is bias toward attributes vers a larger number of values ratiolG $(S, T)=I G(S, T) / H(T)$
- "null" values are possible :

Example are ignored when compute the node

- Can handle attribute with real number :

Discretization with $P\left(A<a_{i}\right)$ for all possible values of A, $I G$ computation

- Pruning to reduce the tree size :

Bottom-up Technique : final branches are pruned when the error rate is larger than with a simple leaf
avec classe majoritaire 3/10

Clustering : graphical examples
In decision / variable / attribute space :

Clustering : graphical examples

In decision / variable / attribute space :

Clustering : definition

Partitionning

 input :Set of n points / examples / observations

$$
E=\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}
$$

output :

Partition of E

$$
P=\left\{P_{1}, P_{2}, \ldots, P_{k}\right\}
$$

equivalent of coloring function $c: E \rightarrow\{1, \ldots, k\}$

Clustering : definition

Partitionning

 input :Set of n points / examples / observations

$$
E=\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}
$$

output :

Partition of E

$$
\begin{aligned}
& \qquad P=\left\{P_{1}, P_{2}, \ldots, P_{k}\right\} \\
& \text { equivalent of coloring function } c: E \rightarrow\{1, \ldots, k\}
\end{aligned}
$$

How many possible partitions with k clusters?

Clustering : definition

Partitionning

 input :Set of n points / examples / observations

$$
E=\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}
$$

output :

Partition of E

$$
\begin{aligned}
& \qquad P=\left\{P_{1}, P_{2}, \ldots, P_{k}\right\} \\
& \text { equivalent of coloring function } c: E \rightarrow\{1, \ldots, k\}
\end{aligned}
$$

How many possible partitions with k clusters?

$$
k^{n} / k!
$$

Huge even for $n=100$, and $k=2$, how to select one?...

Associated optimization problem

Optimisation problem

Criterium quality of the partition :

$$
U: \mathcal{P}(E) \rightarrow \mathbb{R}
$$

But without using labels (non-supervised learning)!
Find a good partition is equivalent to maximize a criterium quality :

$$
\operatorname{argmax}_{P \in \mathcal{P}(E)} U(P)
$$

Use an optimization method (local, greedy, etc.)

Quality criterium

Additive expression

Usually, the criterium is additive on clusters :

$$
U(P)=\sum_{i \in 1}^{k} w\left(P_{i}\right)
$$

where w is quality metric of one cluster

Examples

Sum of square distance between points of the cluster :

$$
w\left(P_{i}\right)=\sum_{x \in P_{i}} \sum_{y \in P_{i}} d^{2}(x, y)
$$

Probability of observation of points in the cluster :

$$
w\left(P_{i}\right)=\prod_{x \in P_{i}} \operatorname{Pr}\left(x \mid \theta_{i}\right)
$$

Clustering algorithms

Differents approaches:

- Hierarchical partitionning :

Agglomeration (or division) of clusters according to criterium (distance, etc.)

Dendrogramm

- Centroid partitionning :

Use the center of cluster
k-means (cf. after)

- Partitionning based on probability distribution

A cluster is encoded by probability (parametric) distribution Algorithm E-M, Gaussian mixture models

- Partitionning based on density :

According to the local density of points, cluster growth

The famous k-means method: Pseudo-code

k-means

Select (randomly) k centers $\mu_{1}^{(1)}, \ldots, \mu_{k}^{(1)}$
repeat
Set the examples to each center according to distance :

$$
P_{i}^{(t)}=\left\{e_{j}: d\left(e_{j}, \mu_{i}^{(t)}\right) \leq d\left(e_{j}, \mu_{a}^{(t)}\right) \forall a=1 . . k\right\}
$$

Update the center of each cluster (mean of clusters) :

$$
\mu_{i}^{(t+1)}=\frac{1}{\sharp P_{i}^{(t)}} \sum_{e_{j} \in P_{i}^{(t)}} e_{j}
$$

until no more modification (convergence)

Comments :
The algorithm is based on parameter k, and a distance metric k -means is a local algorithm such that $U\left(P^{(t+1)}\right)<U\left(P^{(t+1)}\right)$

Advantageous / drawbacks

Advantageous

- Easy to interpret
- Easy to code
- Polynomial complexity

Drawbacks

- Parameter k of the number of the clusters
- Shape of cluster are supposed to be "spherical"
- Clusters are supposed separable

Ensemble methods

Principles

Instead of one learner, use a team of learner!

Unity is strength

... if the team learns well together....

example

Majority voting :
A binary "stupid" predictor with error rate 0.4
What is the error rate of n independent "stupid" predictors with a majority voting mechanism?

Random forest

- Efficient algorithm
- "easy" to train, parallelisation
- Less easy interpretable than decision tree, but better prediction performance
- Ensemble method

Breiman, Leo (2001). "Random Forests". Machine Learning 45 (1) : 5-32.

Basis idea

- Ensemble method: use a team of "simple" predictors
- Simple predictor : decision tree
- Prediction :
- Majority voting for clustering
- Mean of predictions for regression
- Key of the learning mechanism : design a set of heterogeneous trees

Principle

random forest $=$ tree bagging + features sampling

Decision tree are too much dependent of the training set.
To build each tree, use a fragmented view of the problem :

- Draw (with replacement) a sub-set of examples
\Rightarrow bagging
- Draw (with replacement) a sub-set of features/attributes
\Rightarrow features sampling

Reduce the variance using a forest

$$
V_{\text {forest }}=\rho \sigma^{2}+\frac{1-\rho}{B} \sigma^{2}
$$

where :

- σ^{2} : variance of one decision tree
- B: number of trees
- ρ correlation between trees

The feature selection could reduce the coefficient ρ (\sqrt{n} features are randomly selected in feature selection step)

Others versions

- Extremely randomized trees:

For each selected variables, the split is also random (division of attribute values)

- rotation forest :

Principle component analysis (PCA) before build the tree

Geurts, Pierre and Ernst, Damien and Wehenkel, Louis, Extremely randomized trees, Machine Learning, vol. 6, 1, pp. 3-42, 2006.
Rodriguez JJ1, Kuncheva LI, Alonso CJ, Rotation forest : A new classifier ensemble method, IEEE Trans Pattern Anal Mach Intell. 2006 Oct;28(10) :1619-30.

Boosting

Bibliography

- adaBoost pour adaptive boosting (Gödel price 2003) :

Yoav Freund et Robert Schapire, A desicion-theoretic generalization of on-line learning and an application to boosting, Journal of Computer and System Sciences, vol. 55, Num. 1, 1997, p. 119-139

- Gradient boosting :
J.H. Friedman, Greedy function approximation a gradient boosting machine, Ann. Statist., Vol., Num. 5 (2001), 1189-1232.

Boosting principle

Principle

- Iterative design of meta-algorithm based on trees (or another "weak" learner)
- The errors of the previous iteration are taken into account to build the next one :

The next weak learner learn the residus of the error of the previous ones

The weak leaners are "boosted"

Boosting vs. random forest

- Random forest :

Majority voting
Weak learners are built in parallel

- Boosting :

Weighted sum of the weak learners
Weak learners are built iteratively

$$
H(x)=\operatorname{sign}\left(\sum_{i=1}^{B} \alpha_{i} h_{i}(x)\right)
$$

Adaboost algorithm

Initialize the distribution of examples $\forall i=1, \ldots, m, D_{1}(i)=\frac{1}{m}$
for $t=1, \ldots, T$ do

$$
h_{t}=\underset{h \in \mathcal{H}}{\operatorname{argmin}} \epsilon_{t}
$$

with ϵ_{t} the weighted classification error (residues) :

$$
\epsilon_{t}=\sum_{i=1}^{m} D_{t}(i) \cdot\left[y_{i} \neq h\left(x_{i}\right)\right]
$$

Weights of classifier : $\alpha_{t}=\frac{1}{2} \ln \frac{1-\epsilon_{t}}{\epsilon_{t}}$
Update weights: $\forall i=1, \ldots, m, \quad D_{t+1}(i)=\frac{D_{t}(i) e^{-\alpha_{t} y_{i} h_{t}\left(x_{i}\right)}}{Z_{t}}$ with $Z_{t}=2 \sqrt{\epsilon_{t}\left(1-\epsilon_{t}\right)}$
end for
$H(x)=\operatorname{sign}\left(\sum_{t=1}^{T} \alpha_{t} h_{t}(x)\right)$

Gradient boosting : Principle

gradient boosting $=$ descente de gradient + boosting

Boosting :

sequential learning : $H(x)=\operatorname{sign}\left(\sum_{i=1}^{B} \alpha_{i} h_{i}(x)\right)$

Gradient descent :

Generalization the loss function: residues are replaced by the negative gradient of previous ones

See: http:
//orbi.ulg.ac.be/bitstream/2268/163521/1/slides.pdf

Conclusion

There is many techniques, algorithms.
The principle is to use :

- a good model according to data, and available information
- an efficient optimization algorithm to find the parameters of the model according to data, and available information

Have fun with optimization, and machine learning!

