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Multiobjective Optimization MO algorithms MOEA/D

Single Objective Optimization

Inputs

Search space: Set of all feasible solutions,

X
Objective function: Quality criterium

f : X → IR

Goal

Find the best solution according to the criterium

x? = argmax f

But, sometime, the set of all best solutions, good approximation of
the best solution, good ’robust’ solution...

2/41



Multiobjective Optimization MO algorithms MOEA/D

Context

Black box Scenario

We have only {(x0, f (x0)), (x1, f (x1)), ...} given by an ”oracle”
No information is either not available or needed on the definition
of objective function

Objective function given by a computation, or a simulation

Objective function can be irregular, non differentiable, non
continous, etc.

(Very) large search space for discrete case (combinatorial
optimization), i.e. NP-complete problems

Continuous problem, mixt optimization problem
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Real-world applications

Typical applications

Large combinatorial problems:
Scheduling problems, planing problems, DOE,
”mathematical” problems (Firing Squad Synchronization

Pb.), etc.

Calibration of models:
Physic world ⇒ Model(params) ⇒ Simulator(params)

Model(Params) = argminM Error(Data,M)

Shape optimization:
Design (shape, parameters of design)
using a model and a numerical simulator
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Search algorithms

Principle

Enumeration of the search space

A lot of ways to enumerate the search space

Using random sampling: Monte Carlo technics

Local search technics:
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Search algorithms

Single solution-based: Hill-climbing technics,
Simulated-annealing, tabu search, Iterative Local Search, etc.

Population solution-based: Genetic algorithm, Genetic
programming, ant colony algorithm, etc.

Design components are well-known

Probability to decrease,

Memory of path, of sub-space

Diversity of population, etc.
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Research question: Parameters tuning

One Evolutionary Algorithm key point:
Exploitation / Exploration tradeoff

One main practical difficulty:
Choose operators, design components, value of parameters,

representation of solutions

Parameters setting (Lobo et al. 2007):

Off-line before the run: parameter tuning,
On-line during the run: parameter control.

One practical and theoretical question

How to combine correctly the design components
according to the problem (in distributed environment...) ?
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Research question: Expensive optimization

Objective function based on a simulation:
Expensive computation time

One main practical difficulty:
With few computation evaluation, choose operators, design

components, value of parameters, ...

Two main approaches:

Approximate objective function: surrogate model,
Parallel computation: distributed computing.

One practical and theoretical question

How to combine correctly the design components
with low computational budget

according to the problem in distributed environment... ?
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How to solve a multi-criterium problem

Think about the decision problem!

1 Define decision variables

2 Define objective functions (criteria)

3 Define your goal: a priori, or a posteriori

4 Use an (optimization) algorithm

5 Analyze the result
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A priori goal

A priori decision

Decision maker knows what he/she wants before optimization

Weighted sum

fλ(x) = λ1f1(x) + . . .+ λmfm(x)

with λi > 0

Basic model

Often used technique

Convert a multiobjective problem into a single-objective
problem

The definition, and the interpretation are not always
straitforward
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Small example
Road trip between Calais and Nancy

Which one is better ?
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Small example
Road trip between Calais and Nancy

According to time
objective, 1 is better

According to cost
objective, 2 is better

But, 2 is better than
3 for both objectives.
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Pareto dominance

1 and 2 are
incomparable

1 and 3 are
incomparable

2 is better than 3

Pareto dominance

2 dominates 3

3 is dominated by 2
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Multiobjective optimization

Multiobjective optimization problem

X : set of feasible solutions in the decision space

M > 2 objective functions f = (f1, f2, . . . , fM) (to maximize)

Z = f (X ) ⊆ IRM : set of feasible outcome vectors in the
objective space

Decision space

x2

x1 Objective space

f

f1

2
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Pareto dominance definition

Pareto dominance relation (maximization)

A solution x ∈ X dominates a solution x ′ ∈ X (x ′ ≺ x) iff

∀i ∈ {1, 2, . . . ,M}, fi (x ′) 6 fi (x)

∃j ∈ {1, 2, . . . ,M} such that fj(x
′) < fj(x)
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Pareto Optimale solution

Definition: non-dominated solution

A solution x ∈ X is non-dominated (or Pareto optimal, efficient) iff

∀x ′ ∈ X \ {x}, x 6≺ x ′

Decision space

x2

x1 Objective space

f

f1

2

non-
dominated
vector

non-
dominated 
solution

vector

dominated
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Pareto set, Pareto front

Decision space

x2

x1 Objective space

f

f1

2 Pareto front

Pareto optimal
set

Pareto
optimal
solution

Vilfredo Pareto (1848 - 1923)
source: wikipedia
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Multiobjective optimization goal

Goal

Find the Pareto Optimal Set,
or a good approximation of the Pareto Optimal Set
And not a single solution for a single aggregated objective

Decision space

x2

x1 Objective space

f

f1

2 Pareto front

Pareto optimal
set

Pareto
optimal
solution
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Challenges

Search space:
many variables, heterogeneous, dependent variables

Objective space:
many, heterogenous, expensive objective functions

NP-completeness:
deciding if a solution is Pareto optimal is difficult

Intractability:
number of Pareto optimal solutions grows exponentially

with problem dimension
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Methodology

Typical methodology with MO optimization

1 Define decision variables

2 Define all potential objective

3 Define constraints (hard/soft/objective)

4 Choose/design a relevant multiobjective algorithm

5 Search for an approximation of Pareto optimal solutions set

6 Analyse/visualize the solutions set

Loop between 1 to 6...
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Multi-objective optimization algorithms

Population-based algorithm

A Multi-Objective (MO) algorithm is an Evolutionary Algorithm :
the goal is to find a set of solutions

Evolutionary Multi-Objective (EMO) algorithm

21/41



Multiobjective Optimization MO algorithms MOEA/D

Main types of MO algorithms

Three main classes:

(1) Pareto-based approaches: directly or indirectly focus the
search on the Pareto dominance relation.

Pareto Local Search (PLS), Global SEMO, NSGA-II, etc.

(2) Indicator approaches: Progressively improvement the indicator
function: IBEA, SMS-MOEA, etc.

(3) Scalar approaches: multiple scalarized aggregations of the
objective functions: MOEA/D, etc.

Objective space

f

f1

2

Accept

No
accept

Objective space

f

f1

2
supported 
solution
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(1) Pareto-based approaches

EMO based on dominance relation to update set of solutions
(archive)

example of: Pareto Local Search (PLS)

Pick a random solution x0 ∈ X
A← {x0}
repeat

Select a non-visited x ∈ A
Create neighbors N(x) by flipping each bit of x in turns
Flag x as visited
A← non-dominated sol. from A ∪ N(x)

until all-visited ∨ maxeval

[Paquete et al. 2004][9]
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A Pareto-based approach: Pareto Local Search

• Archive solutions using Dominance relation
• Iteratively improve this archive by exploring the neighborhood

Objective space

f

f1

2

Accept neighbor

current
archive

Objective space

f

f1

2

No Accept

current
archive

Objective space

f

f1

2

Accept

current
archive

Objective space

f

f1

2

current
archive
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Pareto-based approaches : G-SEMO

local search:
Pareto Local Search (PLS)

Pick a random solution x0 ∈ X
A← {x0}
repeat

Select a non-visited x ∈ A
Create N(x) by flipping each bit

of x in turns
Flag x as visited
A← non-dom. from A ∪ N(x)

until all-visited ∨ maxeval

[Paquete et al. 2004][9]

global search:
Global-Simple EMO (G-SEMO)

Pick a random solution x0 ∈ X
A← {x0}
repeat

Select x ∈ A at random
Create x ′ by flipping each bit of

x with a rate 1/N

A← non-dom. from A ∪ {x ′}
until maxeval

[Laumanns et al. 2004][6]
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A Pareto-based approach: NSGA-II (Deb et al. 2000)

• No archive of solutions
• Classical EA based on crowding distance
• Replacement: elitist based on non-dominated sorting, and
crowding distance

Evolutionary Algorithm (EA)

repeat
selection(pop, children)
random variation(children)
replacement(pop, children)

until stoping criterium(pop)
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NSGA-II: non-dominated sorting, crowding distance

min

f

f1

2

m
in

Front 1

Front 2
Front 3

min

f

f1

2

m
in

i

i-1

i+1

• Selection:
binary tournament using sorting, and crowding distance
• Random variation:

crossover, mutation, etc.
• Replacement:

elitist based on non-dominated sorting, and crowding distance
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NSGA-II: non-dominated sorting, crowding distance

• Selection:
binary tournament using sorting, and crowding distance
• Random variation:

crossover, mutation, etc.
• Replacement:

elitist based on non-dominated sorting, and crowding distance
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(2) Indicator-based approches

Single objective optimization at population level :

• Associate one indicator (scalar value) to each population
• Optimization of this indicator

Possible indicators: hypervolume, epsilon-indicator, etc.

28/41



Multiobjective Optimization MO algorithms MOEA/D

SMS-MOEA: S metric selection-MOEA
[Beume et al. 2007][1]

P ← initialization()
repeat

q ← Generate(P)
P ← Reduce(P ∪ {q})

until maxeval

Generate

Use random variation (mutation, etc.) to create one candidate solution

Reduction

Remove the worst solution according to non-dominated sorting, and S metric

A S-metric is an indicateur such hypervolume
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IBEA: Indicator-Based Evolutionary algorithm
[Zitzler et al. 2004][12]

P ← initialization()
repeat

P
′
← selection(P)

Q ← random variation(P
′
)

Evaluation of Q
P ← replacement(P, Q)

until maxeval

Fitness assignment

Pairwise comparison of solutions in a population w.r.t. indicator i

Fitness value: ”loss in quality” in the population P if x was removed

f (x) =
∑

x
′∈P\{x}

(−e−i(x
′
,x)/κ)

Often the ε-indicator is used
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(3) Decomposition based approaches: MOEA/D

See the next section
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(3) Decomposition based approaches: MOEA/D

Principe

Divide the multi-objective problem
into several single-objective sub-problems

Cooperation
between different single-objective sub-problems
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Original MOEA/D [11] (minimization)

/* µ sub-problems defined by µ directions */
(λ1, . . . , λµ)← initialization direction()
Initialize ∀i = 1..µ B(i) the neighboring sub-problems of sub-problem i
/* one solution for each sub-problem */

(x1, . . . , xµ)← initialization solution()
repeat

for i = 1..µ do
Select x and x

′
randomly in {xj : j ∈ B(i)}

y ← mutation crossover(x , x
′
)

for j ∈ B(i) do
if g(y |λj , z

?
j ) < g(xj |λj , z

?
j ) then

xj ← y
end if

end for
end for

until max eval

B(i) is the set of the T closest neighboring sub-problems of sub-problem i
g( |λi , z

?
i ): scalar function of sub-pb. i with λi direction, and z?i reference point
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MOEA/D steady-state variant

Another MOEA/D (minimization)

/* µ sub-problems defined by µ directions */
(λ1, . . . , λµ)← initialization direction()
Initialize ∀i = 1..µ B(i) the neighboring sub-problems of sub-problem i
/* one solution for each sub-problem */

(x1, . . . , xµ)← initialization solution()
repeat

Select i at random ∈ 1..µ
Select x randomly in {xj : j ∈ B(i)}
y ← mutation crossover(xi , x)
for j ∈ B(i) do

if g(y |λj , z
?
j ) < g(xj |λj , z

?
j ) then

xj ← y
end if

end for
until max eval
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Representation of steady-state MOEA/D

f

f1

2 λ

z*

λ
λ

λ

λ

λ

λ

z1 z

z

z
z

z

z

2

i-1

i

i+1

1 2
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i+1

i-1

μ

μ-1μ-1

μ

Population at iteration t

Minimization problem

One solution xi for each sub pb. i

Representation of solutions in
objective space: zi = g(xi |λi , z

?
i )

Same reference point for all
sub-pb. z? = z?1 = . . . = z?µ

Scalar function g :
Weighted Tchebycheff

Neighborhood size ]B(i) = T = 3
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Decomposition based approaches: MOEA/D

Main issues

1. Impact of the scalar function:
[Derbel et. al., 2014] [2]

2. Direction of search:
cf.[Derbel et. al., 2014] [3]

3. Cooperation between sub-problems:
[Gauvain et al., 2014] [8]

4. Parallelization:
cf. algorithm of ”A fine-grained message passing MOEA/D” [Derbel et

al., 2015] [4]

cf. [Drouet et al., 2021] [5]
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Scalar approaches: scalarizing function

• multiple scalarized aggregations of the objective functions

Objective space

f

f1

2
supported 
solution

Different aggregations

Weighted sum:

g(x |λ) =
∑

i=1..m

λi fi (x)

Weighted Tchebycheff:

g(x |λ, z) = max
i=1..m

{λi |zi − fi (x)|}
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MOEA/D-DE [7]

For solving numerical (continuous) optimization problems that
combines

Multiobjective MOEA/D

Differential Evolution (DE) for the variation operators
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Reminder: DE in short

DE algorithm: EA algorithm

Initialize(pop)
Evaluate(pop)
repeat

Mutation(pop, offsprings)
Xover(pop, offsprings)
Evaluate(offsprings)
Replace(pop, offsprings)

until not continue(pop)
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DE operators

Mutation: Rand/1

For each element i of the population:

mutant [ i ] = pop [ r 1 ] + F ∗ ( pop [ r 2 ] − pop [ r3 ] )

with i, r1, r2, r3 four different indices with r1, r2, r3 random
and F ∈ [0, 2] a parameter (mutation factor)

Crossover

For each element i of the population:

j r a n d = random ( 0 , d )
f o r ( u n s i g n e d j = 0 ; j < d ; j ++)

i f ( j = j r a n d o r rnd ( ) < CR)
o f f s p r i n g [ i ] [ j ] = mutant [ i ] [ j ] ;

e l s e
o f f s p r i n g [ i ] [ j ] = p a r e n t s [ i ] [ j ] ;

with CR ∈ [0, 1] a parameter (crossover rate)

Replacement

i f ( o f f s p r i n g s [ i ] i s b e t t e r than p a r e n t s [ i ] )
p a r e n t s [ i ] = o f f s p r i n g s [ i ] ;
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Algorithm MOEA/D-DE from [10]
Review and Analysis of Three Components of Differential Evolution Mutation Operator in MOEA/D-DE 3

where S is the solution space. f : S → RM is an ob-

jective function vector that consists of M potentially

conflicting objective functions, and RM is the objective

space. In (1), x = (x1, ..., xD)T is a solution vector,

and S =
∏D

j=1[x
min
j , xmax

j ] is the bound-constrained so-

lution space where xmin
j ≤ xj ≤ xmax

j for each index

j ∈ {1, ..., D}.

We say that x1 dominates x2 if and only if fi(x
1) ≤

fi(x
2) for all i ∈ {1, ..., M} and fi(x

1) < fi(x
2) for at

least one index i. Here, x∗ is a Pareto-optimal solution

if no x ∈ S exists such that x dominates x∗. In this

case, f(x∗) is a Pareto-optimal objective vector. The

set of all x∗ in S is the Pareto-optimal solution set,
and the set of all f(x∗) in RM is the Pareto front. In

general, no solution can simultaneously minimize all ob-

jective functions f1, ..., fM in an MOP. Thus, the goal

of multi-objective optimization is to find a set of non-

dominated solutions that are well distributed and close
to the Pareto front in the objective space.

2.2 MOEA/D-DE

MOEA/D-type algorithms, including MOEA/D-DE [25],

decompose an M -objective MOP defined in (1) into

µ single-objective sub-problems g1(x|w1), ..., gµ(x|wµ)

using a set of uniformly distributed weight vectors W =
{w1, ..., wµ} and a scalarizing function g : RM → R,

where µ is the population size, wi = (wi
1, ..., w

i
M )T

for each i ∈ {1, ..., µ}, and
∑M

j=1 wi
j = 1. For each

i ∈ {1, ..., µ}, an individual xi is assigned to the i-

th sub-problem. MOEA/D-type algorithms attempt to
find the optimal solutions of all sub-problems simulta-

neously.

Algorithm 1 shows the procedure of MOEA/D-DE.

After initialization (lines 1–3), the following steps are

iteratively performed. For each individual, an index list
is selected for use in the mating and replacement selec-

tions (lines 5–9). Then, the mating and reproduction

operations are performed (lines 10–15). Finally, the re-

placement selection is applied to the child and the in-
dividuals in the population (lines 17–20). We explain

each step of MOEA/D-DE in detail below.

At the beginning of the search, all individuals in the

population P = {x1, ..., xµ} are randomly generated

in the solution space (line 1). For each sub-problem
index i ∈ {1, ..., µ}, an index list Bi = {i1, ..., iT } is

initialized (lines 2-3): Bi consists of indices of the T

closest weight vectors to wi in the weight vector space,

where T is the neighborhood size. After initialization,
the following steps (lines 5–20) are repeatedly applied

to each sub-problem until a termination condition is

satisfied.

Algorithm 1: The procedure of MOEA/D-DE

1 t← 1, initialize the population P = {x1, ..., xµ};
2 for i ∈ {1, ..., µ} do
3 Set the neighborhood index list Bi = {i1, ..., iT };

4 while The termination criteria are not met do
5 for i ∈ {1, ..., µ} do
6 if rand[0, 1] ≤ δ then

7 R← Bi;
8 else
9 R← {1, ..., µ};

10 Select parent indices from R with an index

selection method (Subsection 3.2);

11 Generate the mutant vector vi using a mutation

strategy (Subsection 3.1);

12 if vi /∈ S then

13 Repair vi using a bound-handling method

(Subsection 3.3);

14 Generate the child ui by crossing xi and vi;

15 Apply a GA mutation operator to ui;
16 c← 1;
17 while c ≤ nrep and R %= ∅ do
18 Randomly select an index j from R, and

R← R\{j};

19 if g(ui|wj , z∗) ≤ g(xj |wj , z∗) then
20 xj ← ui, c← c + 1;

21 t← t + 1;

For each i, a set of individual indices R is set to

Bi with a probability of δ ∈ [0, 1] or {1, ..., µ} with a

probability of 1 − δ (lines 6–9). The function rand[0, 1]

in line 6 is a randomly chosen value in the range [0, 1].
After R has been determined, MOEA/D-DE generates

a mutant vector vi (lines 10–13). First, individual in-

dices {r1, r2, ...} are randomly selected from R using an

index selection method (line 10). Next, vi is generated
by applying a mutation strategy to the selected individ-

uals {xr1 , xr2 , ...} (line 11). If an element of vi violates

a corresponding bound constraint (i.e., vi /∈ S), then a

bound-handling method is applied to it such that vi ∈ S
(line 13). The details of each procedure (the index se-
lection, the mutation strategy, and the bound-handling

method) are described in Subsections 3.2, 3.1, and 3.3,

respectively.

After vi is repaired by a bound-handling method (if
needed), a child ui is generated by recombining xi and

vi (line 14). Binomial crossover [35], which is the most

basic crossover method in DE, is defined as follows:

ui
j =

{
vi

j if rand[0, 1] ≤ C or j = jrand

xi
j otherwise

, (2)

where the crossover rate C ∈ [0, 1] in (2) controls the

number of inherited variables from xi to ui. The de-

cision variable index jrand in (2) is randomly selected

from {1, ..., D}. Since binomial crossover only exchanges
elements between the parent individual xi and the mu-

tant vector vi, the child ui always satisfies the bound

constraints as long as xi, vi ∈ S.
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