
Multiobjective Optimization MO algorithms MOEA/D

Multiobjective Optimization
Algorithms

Sébastien Verel

LISIC
Université du Littoral Côte d’Opale

Equipe OSMOSE

verel@univ-littoral.fr

http://www.lisic.univ-littoral.fr/~verel

Master informatique WeDSci, ULCO,

2021, version 0.1

1/41

verel@univ-littoral.fr
http://www.lisic.univ-littoral.fr/~verel

Multiobjective Optimization MO algorithms MOEA/D

Single Objective Optimization

Inputs

Search space: Set of all feasible solutions,

X
Objective function: Quality criterium

f : X → IR

Goal

Find the best solution according to the criterium

x? = argmax f

But, sometime, the set of all best solutions, good approximation of
the best solution, good ’robust’ solution...

2/41

Multiobjective Optimization MO algorithms MOEA/D

Context

Black box Scenario

We have only {(x0, f (x0)), (x1, f (x1)), ...} given by an ”oracle”
No information is either not available or needed on the definition
of objective function

Objective function given by a computation, or a simulation

Objective function can be irregular, non differentiable, non
continous, etc.

(Very) large search space for discrete case (combinatorial
optimization), i.e. NP-complete problems

Continuous problem, mixt optimization problem

3/41

Multiobjective Optimization MO algorithms MOEA/D

Real-world applications

Typical applications

Large combinatorial problems:
Scheduling problems, planing problems, DOE,
”mathematical” problems (Firing Squad Synchronization

Pb.), etc.

Calibration of models:
Physic world ⇒ Model(params) ⇒ Simulator(params)

Model(Params) = argminM Error(Data,M)

Shape optimization:
Design (shape, parameters of design)
using a model and a numerical simulator

4/41

Multiobjective Optimization MO algorithms MOEA/D

Search algorithms

Principle

Enumeration of the search space

A lot of ways to enumerate the search space

Using random sampling: Monte Carlo technics

Local search technics:

5/41

Multiobjective Optimization MO algorithms MOEA/D

Search algorithms

Single solution-based: Hill-climbing technics,
Simulated-annealing, tabu search, Iterative Local Search, etc.

Population solution-based: Genetic algorithm, Genetic
programming, ant colony algorithm, etc.

Design components are well-known

Probability to decrease,

Memory of path, of sub-space

Diversity of population, etc.

6/41

Multiobjective Optimization MO algorithms MOEA/D

Research question: Parameters tuning

One Evolutionary Algorithm key point:
Exploitation / Exploration tradeoff

One main practical difficulty:
Choose operators, design components, value of parameters,

representation of solutions

Parameters setting (Lobo et al. 2007):

Off-line before the run: parameter tuning,
On-line during the run: parameter control.

One practical and theoretical question

How to combine correctly the design components
according to the problem (in distributed environment...) ?

7/41

Multiobjective Optimization MO algorithms MOEA/D

Research question: Expensive optimization

Objective function based on a simulation:
Expensive computation time

One main practical difficulty:
With few computation evaluation, choose operators, design

components, value of parameters, ...

Two main approaches:

Approximate objective function: surrogate model,
Parallel computation: distributed computing.

One practical and theoretical question

How to combine correctly the design components
with low computational budget

according to the problem in distributed environment... ?

8/41

Multiobjective Optimization MO algorithms MOEA/D

How to solve a multi-criterium problem

Think about the decision problem!

1 Define decision variables

2 Define objective functions (criteria)

3 Define your goal: a priori, or a posteriori

4 Use an (optimization) algorithm

5 Analyze the result

9/41

Multiobjective Optimization MO algorithms MOEA/D

A priori goal

A priori decision

Decision maker knows what he/she wants before optimization

Weighted sum

fλ(x) = λ1f1(x) + . . .+ λmfm(x)

with λi > 0

Basic model

Often used technique

Convert a multiobjective problem into a single-objective
problem

The definition, and the interpretation are not always
straitforward

10/41

Multiobjective Optimization MO algorithms MOEA/D

Small example
Road trip between Calais and Nancy

Which one is better ?

11/41

Multiobjective Optimization MO algorithms MOEA/D

Small example
Road trip between Calais and Nancy

According to time
objective, 1 is better

According to cost
objective, 2 is better

But, 2 is better than
3 for both objectives.

12/41

Multiobjective Optimization MO algorithms MOEA/D

Small example
Road trip between Calais and Nancy

According to time
objective, 1 is better

According to cost
objective, 2 is better

But, 2 is better than
3 for both objectives.

12/41

Multiobjective Optimization MO algorithms MOEA/D

Pareto dominance

1 and 2 are
incomparable

1 and 3 are
incomparable

2 is better than 3

Pareto dominance

2 dominates 3

3 is dominated by 2

13/41

Multiobjective Optimization MO algorithms MOEA/D

Multiobjective optimization

Multiobjective optimization problem

X : set of feasible solutions in the decision space

M > 2 objective functions f = (f1, f2, . . . , fM) (to maximize)

Z = f (X) ⊆ IRM : set of feasible outcome vectors in the
objective space

Decision space

x2

x1 Objective space

f

f1

2

14/41

Multiobjective Optimization MO algorithms MOEA/D

Pareto dominance definition

Pareto dominance relation (maximization)

A solution x ∈ X dominates a solution x ′ ∈ X (x ′ ≺ x) iff

∀i ∈ {1, 2, . . . ,M}, fi (x ′) 6 fi (x)

∃j ∈ {1, 2, . . . ,M} such that fj(x
′) < fj(x)

15/41

Multiobjective Optimization MO algorithms MOEA/D

Pareto Optimale solution

Definition: non-dominated solution

A solution x ∈ X is non-dominated (or Pareto optimal, efficient) iff

∀x ′ ∈ X \ {x}, x 6≺ x ′

Decision space

x2

x1 Objective space

f

f1

2

non-
dominated
vector

non-
dominated
solution

vector

dominated

16/41

Multiobjective Optimization MO algorithms MOEA/D

Pareto set, Pareto front

Decision space

x2

x1 Objective space

f

f1

2 Pareto front

Pareto optimal
set

Pareto
optimal
solution

Vilfredo Pareto (1848 - 1923)
source: wikipedia

17/41

Multiobjective Optimization MO algorithms MOEA/D

Multiobjective optimization goal

Goal

Find the Pareto Optimal Set,
or a good approximation of the Pareto Optimal Set
And not a single solution for a single aggregated objective

Decision space

x2

x1 Objective space

f

f1

2 Pareto front

Pareto optimal
set

Pareto
optimal
solution

18/41

Multiobjective Optimization MO algorithms MOEA/D

Challenges

Search space:
many variables, heterogeneous, dependent variables

Objective space:
many, heterogenous, expensive objective functions

NP-completeness:
deciding if a solution is Pareto optimal is difficult

Intractability:
number of Pareto optimal solutions grows exponentially

with problem dimension

19/41

Multiobjective Optimization MO algorithms MOEA/D

Methodology

Typical methodology with MO optimization

1 Define decision variables

2 Define all potential objective

3 Define constraints (hard/soft/objective)

4 Choose/design a relevant multiobjective algorithm

5 Search for an approximation of Pareto optimal solutions set

6 Analyse/visualize the solutions set

Loop between 1 to 6...

20/41

Multiobjective Optimization MO algorithms MOEA/D

Multi-objective optimization algorithms

Population-based algorithm

A Multi-Objective (MO) algorithm is an Evolutionary Algorithm :
the goal is to find a set of solutions

Evolutionary Multi-Objective (EMO) algorithm

21/41

Multiobjective Optimization MO algorithms MOEA/D

Main types of MO algorithms

Three main classes:

(1) Pareto-based approaches: directly or indirectly focus the
search on the Pareto dominance relation.

Pareto Local Search (PLS), Global SEMO, NSGA-II, etc.

(2) Indicator approaches: Progressively improvement the indicator
function: IBEA, SMS-MOEA, etc.

(3) Scalar approaches: multiple scalarized aggregations of the
objective functions: MOEA/D, etc.

Objective space

f

f1

2

Accept

No
accept

Objective space

f

f1

2
supported
solution

22/41

Multiobjective Optimization MO algorithms MOEA/D

(1) Pareto-based approaches

EMO based on dominance relation to update set of solutions
(archive)

example of: Pareto Local Search (PLS)

Pick a random solution x0 ∈ X
A← {x0}
repeat

Select a non-visited x ∈ A
Create neighbors N(x) by flipping each bit of x in turns
Flag x as visited
A← non-dominated sol. from A ∪ N(x)

until all-visited ∨ maxeval

[Paquete et al. 2004][9]

23/41

Multiobjective Optimization MO algorithms MOEA/D

A Pareto-based approach: Pareto Local Search

• Archive solutions using Dominance relation
• Iteratively improve this archive by exploring the neighborhood

Objective space

f

f1

2

Accept neighbor

current
archive

Objective space

f

f1

2

No Accept

current
archive

Objective space

f

f1

2

Accept

current
archive

Objective space

f

f1

2

current
archive

24/41

Multiobjective Optimization MO algorithms MOEA/D

Pareto-based approaches : G-SEMO

local search:
Pareto Local Search (PLS)

Pick a random solution x0 ∈ X
A← {x0}
repeat

Select a non-visited x ∈ A
Create N(x) by flipping each bit

of x in turns
Flag x as visited
A← non-dom. from A ∪ N(x)

until all-visited ∨ maxeval

[Paquete et al. 2004][9]

global search:
Global-Simple EMO (G-SEMO)

Pick a random solution x0 ∈ X
A← {x0}
repeat

Select x ∈ A at random
Create x ′ by flipping each bit of

x with a rate 1/N

A← non-dom. from A ∪ {x ′}
until maxeval

[Laumanns et al. 2004][6]

25/41

Multiobjective Optimization MO algorithms MOEA/D

A Pareto-based approach: NSGA-II (Deb et al. 2000)

• No archive of solutions
• Classical EA based on crowding distance
• Replacement: elitist based on non-dominated sorting, and
crowding distance

Evolutionary Algorithm (EA)

repeat
selection(pop, children)
random variation(children)
replacement(pop, children)

until stoping criterium(pop)

26/41

Multiobjective Optimization MO algorithms MOEA/D

NSGA-II: non-dominated sorting, crowding distance

min

f

f1

2

m
in

Front 1

Front 2
Front 3

min

f

f1

2

m
in

i

i-1

i+1

• Selection:
binary tournament using sorting, and crowding distance
• Random variation:

crossover, mutation, etc.
• Replacement:

elitist based on non-dominated sorting, and crowding distance
27/41

Multiobjective Optimization MO algorithms MOEA/D

NSGA-II: non-dominated sorting, crowding distance

• Selection:
binary tournament using sorting, and crowding distance
• Random variation:

crossover, mutation, etc.
• Replacement:

elitist based on non-dominated sorting, and crowding distance

27/41

Multiobjective Optimization MO algorithms MOEA/D

(2) Indicator-based approches

Single objective optimization at population level :

• Associate one indicator (scalar value) to each population
• Optimization of this indicator

Possible indicators: hypervolume, epsilon-indicator, etc.

28/41

Multiobjective Optimization MO algorithms MOEA/D

SMS-MOEA: S metric selection-MOEA
[Beume et al. 2007][1]

P ← initialization()
repeat

q ← Generate(P)
P ← Reduce(P ∪ {q})

until maxeval

Generate

Use random variation (mutation, etc.) to create one candidate solution

Reduction

Remove the worst solution according to non-dominated sorting, and S metric

A S-metric is an indicateur such hypervolume

29/41

Multiobjective Optimization MO algorithms MOEA/D

IBEA: Indicator-Based Evolutionary algorithm
[Zitzler et al. 2004][12]

P ← initialization()
repeat

P
′
← selection(P)

Q ← random variation(P
′
)

Evaluation of Q
P ← replacement(P, Q)

until maxeval

Fitness assignment

Pairwise comparison of solutions in a population w.r.t. indicator i

Fitness value: ”loss in quality” in the population P if x was removed

f (x) =
∑

x
′∈P\{x}

(−e−i(x
′
,x)/κ)

Often the ε-indicator is used

30/41

Multiobjective Optimization MO algorithms MOEA/D

(3) Decomposition based approaches: MOEA/D

See the next section

31/41

Multiobjective Optimization MO algorithms MOEA/D

(3) Decomposition based approaches: MOEA/D

Principe

Divide the multi-objective problem
into several single-objective sub-problems

Cooperation
between different single-objective sub-problems

32/41

Multiobjective Optimization MO algorithms MOEA/D

Original MOEA/D [11] (minimization)

/* µ sub-problems defined by µ directions */
(λ1, . . . , λµ)← initialization direction()
Initialize ∀i = 1..µ B(i) the neighboring sub-problems of sub-problem i
/* one solution for each sub-problem */

(x1, . . . , xµ)← initialization solution()
repeat

for i = 1..µ do
Select x and x

′
randomly in {xj : j ∈ B(i)}

y ← mutation crossover(x , x
′
)

for j ∈ B(i) do
if g(y |λj , z

?
j) < g(xj |λj , z

?
j) then

xj ← y
end if

end for
end for

until max eval

B(i) is the set of the T closest neighboring sub-problems of sub-problem i
g(|λi , z

?
i): scalar function of sub-pb. i with λi direction, and z?i reference point

33/41

Multiobjective Optimization MO algorithms MOEA/D

MOEA/D steady-state variant

Another MOEA/D (minimization)

/* µ sub-problems defined by µ directions */
(λ1, . . . , λµ)← initialization direction()
Initialize ∀i = 1..µ B(i) the neighboring sub-problems of sub-problem i
/* one solution for each sub-problem */

(x1, . . . , xµ)← initialization solution()
repeat

Select i at random ∈ 1..µ
Select x randomly in {xj : j ∈ B(i)}
y ← mutation crossover(xi , x)
for j ∈ B(i) do

if g(y |λj , z
?
j) < g(xj |λj , z

?
j) then

xj ← y
end if

end for
until max eval

34/41

Multiobjective Optimization MO algorithms MOEA/D

Representation of steady-state MOEA/D

f

f1

2 λ

z*

λ
λ

λ

λ

λ

λ

z1 z

z

z
z

z

z

2

i-1

i

i+1

1 2

i

i+1

i-1

μ

μ-1μ-1

μ

Population at iteration t

Minimization problem

One solution xi for each sub pb. i

Representation of solutions in
objective space: zi = g(xi |λi , z

?
i)

Same reference point for all
sub-pb. z? = z?1 = . . . = z?µ

Scalar function g :
Weighted Tchebycheff

Neighborhood size]B(i) = T = 3

35/41

Multiobjective Optimization MO algorithms MOEA/D

Representation of steady-state MOEA/D

f

f1

2 λ

z*

λ
λ

λ

λ

λ

λ

z1 z

z

z
z

z

z

2

i-1

i

i+1

B(i)

1 2

i

i+1

i-1

μ

μ-1μ-1

μ

From the neigh. B(i) of sub-pb. i ,
xi+1 is selected

Minimization problem

One solution xi for each sub pb. i

Representation of solutions in
objective space: zi = g(xi |λi , z

?
i)

Same reference point for all
sub-pb. z? = z?1 = . . . = z?µ

Scalar function g :
Weighted Tchebycheff

Neighborhood size]B(i) = T = 3

35/41

Multiobjective Optimization MO algorithms MOEA/D

Representation of steady-state MOEA/D

f

f1

2 λ

z*

λ
λ

λ

λ

λ

λ

z1 z

z

z
z

z

z

2

i-1

i

i+1

1 2

i

i+1

i-1

μ

μ-1μ-1

μ

The mutated solution y is created

Minimization problem

One solution xi for each sub pb. i

Representation of solutions in
objective space: zi = g(xi |λi , z

?
i)

Same reference point for all
sub-pb. z? = z?1 = . . . = z?µ

Scalar function g :
Weighted Tchebycheff

Neighborhood size]B(i) = T = 3

35/41

Multiobjective Optimization MO algorithms MOEA/D

Representation of steady-state MOEA/D

f

f1

2 λ

z*

λ
λ

λ

λ

λ

λ

z1 z

z

z z

z

z

2

i-1

i i+1

1 2

i

i+1

i-1

μ

μ-1μ-1

μ

According to scalar fonction,
y is worst than xi−1,

y is better than xi and replaces it.

Minimization problem

One solution xi for each sub pb. i

Representation of solutions in
objective space: zi = g(xi |λi , z

?
i)

Same reference point for all
sub-pb. z? = z?1 = . . . = z?µ

Scalar function g :
Weighted Tchebycheff

Neighborhood size]B(i) = T = 3

35/41

Multiobjective Optimization MO algorithms MOEA/D

Representation of steady-state MOEA/D

f

f1

2 λ

z*

λ
λ

λ

λ

λ

λ

z1 z

z

z
z

z

z

2

i-1

i

i+1

1 2

i

i+1

i-1

μ

μ-1μ-1

μ

According to scalar fonction,
y is also better than xi+1

and replaces it for the next iteration.

Minimization problem

One solution xi for each sub pb. i

Representation of solutions in
objective space: zi = g(xi |λi , z

?
i)

Same reference point for all
sub-pb. z? = z?1 = . . . = z?µ

Scalar function g :
Weighted Tchebycheff

Neighborhood size]B(i) = T = 3

35/41

Multiobjective Optimization MO algorithms MOEA/D

Decomposition based approaches: MOEA/D

Main issues

1. Impact of the scalar function:
[Derbel et. al., 2014] [2]

2. Direction of search:
cf.[Derbel et. al., 2014] [3]

3. Cooperation between sub-problems:
[Gauvain et al., 2014] [8]

4. Parallelization:
cf. algorithm of ”A fine-grained message passing MOEA/D” [Derbel et

al., 2015] [4]

cf. [Drouet et al., 2021] [5]

36/41

Multiobjective Optimization MO algorithms MOEA/D

Scalar approaches: scalarizing function

• multiple scalarized aggregations of the objective functions

Objective space

f

f1

2
supported
solution

Different aggregations

Weighted sum:

g(x |λ) =
∑

i=1..m

λi fi (x)

Weighted Tchebycheff:

g(x |λ, z) = max
i=1..m

{λi |zi − fi (x)|}

37/41

Multiobjective Optimization MO algorithms MOEA/D

MOEA/D-DE [7]

For solving numerical (continuous) optimization problems that
combines

Multiobjective MOEA/D

Differential Evolution (DE) for the variation operators

38/41

Multiobjective Optimization MO algorithms MOEA/D

Reminder: DE in short

DE algorithm: EA algorithm

Initialize(pop)
Evaluate(pop)
repeat

Mutation(pop, offsprings)
Xover(pop, offsprings)
Evaluate(offsprings)
Replace(pop, offsprings)

until not continue(pop)

39/41

Multiobjective Optimization MO algorithms MOEA/D

DE operators

Mutation: Rand/1

For each element i of the population:

mutant [i] = pop [r 1] + F ∗ (pop [r 2] − pop [r3])

with i, r1, r2, r3 four different indices with r1, r2, r3 random
and F ∈ [0, 2] a parameter (mutation factor)

Crossover

For each element i of the population:

j r a n d = random (0 , d)
f o r (u n s i g n e d j = 0 ; j < d ; j ++)

i f (j = j r a n d o r rnd () < CR)
o f f s p r i n g [i] [j] = mutant [i] [j] ;

e l s e
o f f s p r i n g [i] [j] = p a r e n t s [i] [j] ;

with CR ∈ [0, 1] a parameter (crossover rate)

Replacement

i f (o f f s p r i n g s [i] i s b e t t e r than p a r e n t s [i])
p a r e n t s [i] = o f f s p r i n g s [i] ;

40/41

Multiobjective Optimization MO algorithms MOEA/D

Algorithm MOEA/D-DE from [10]
Review and Analysis of Three Components of Differential Evolution Mutation Operator in MOEA/D-DE 3

where S is the solution space. f : S → RM is an ob-

jective function vector that consists of M potentially

conflicting objective functions, and RM is the objective

space. In (1), x = (x1, ..., xD)T is a solution vector,

and S =
∏D

j=1[x
min
j , xmax

j] is the bound-constrained so-

lution space where xmin
j ≤ xj ≤ xmax

j for each index

j ∈ {1, ..., D}.

We say that x1 dominates x2 if and only if fi(x
1) ≤

fi(x
2) for all i ∈ {1, ..., M} and fi(x

1) < fi(x
2) for at

least one index i. Here, x∗ is a Pareto-optimal solution

if no x ∈ S exists such that x dominates x∗. In this

case, f(x∗) is a Pareto-optimal objective vector. The

set of all x∗ in S is the Pareto-optimal solution set,
and the set of all f(x∗) in RM is the Pareto front. In

general, no solution can simultaneously minimize all ob-

jective functions f1, ..., fM in an MOP. Thus, the goal

of multi-objective optimization is to find a set of non-

dominated solutions that are well distributed and close
to the Pareto front in the objective space.

2.2 MOEA/D-DE

MOEA/D-type algorithms, including MOEA/D-DE [25],

decompose an M -objective MOP defined in (1) into

µ single-objective sub-problems g1(x|w1), ..., gµ(x|wµ)

using a set of uniformly distributed weight vectors W =
{w1, ..., wµ} and a scalarizing function g : RM → R,

where µ is the population size, wi = (wi
1, ..., w

i
M)T

for each i ∈ {1, ..., µ}, and
∑M

j=1 wi
j = 1. For each

i ∈ {1, ..., µ}, an individual xi is assigned to the i-

th sub-problem. MOEA/D-type algorithms attempt to
find the optimal solutions of all sub-problems simulta-

neously.

Algorithm 1 shows the procedure of MOEA/D-DE.

After initialization (lines 1–3), the following steps are

iteratively performed. For each individual, an index list
is selected for use in the mating and replacement selec-

tions (lines 5–9). Then, the mating and reproduction

operations are performed (lines 10–15). Finally, the re-

placement selection is applied to the child and the in-
dividuals in the population (lines 17–20). We explain

each step of MOEA/D-DE in detail below.

At the beginning of the search, all individuals in the

population P = {x1, ..., xµ} are randomly generated

in the solution space (line 1). For each sub-problem
index i ∈ {1, ..., µ}, an index list Bi = {i1, ..., iT } is

initialized (lines 2-3): Bi consists of indices of the T

closest weight vectors to wi in the weight vector space,

where T is the neighborhood size. After initialization,
the following steps (lines 5–20) are repeatedly applied

to each sub-problem until a termination condition is

satisfied.

Algorithm 1: The procedure of MOEA/D-DE

1 t← 1, initialize the population P = {x1, ..., xµ};
2 for i ∈ {1, ..., µ} do
3 Set the neighborhood index list Bi = {i1, ..., iT };

4 while The termination criteria are not met do
5 for i ∈ {1, ..., µ} do
6 if rand[0, 1] ≤ δ then

7 R← Bi;
8 else
9 R← {1, ..., µ};

10 Select parent indices from R with an index

selection method (Subsection 3.2);

11 Generate the mutant vector vi using a mutation

strategy (Subsection 3.1);

12 if vi /∈ S then

13 Repair vi using a bound-handling method

(Subsection 3.3);

14 Generate the child ui by crossing xi and vi;

15 Apply a GA mutation operator to ui;
16 c← 1;
17 while c ≤ nrep and R %= ∅ do
18 Randomly select an index j from R, and

R← R\{j};

19 if g(ui|wj , z∗) ≤ g(xj |wj , z∗) then
20 xj ← ui, c← c + 1;

21 t← t + 1;

For each i, a set of individual indices R is set to

Bi with a probability of δ ∈ [0, 1] or {1, ..., µ} with a

probability of 1 − δ (lines 6–9). The function rand[0, 1]

in line 6 is a randomly chosen value in the range [0, 1].
After R has been determined, MOEA/D-DE generates

a mutant vector vi (lines 10–13). First, individual in-

dices {r1, r2, ...} are randomly selected from R using an

index selection method (line 10). Next, vi is generated
by applying a mutation strategy to the selected individ-

uals {xr1 , xr2 , ...} (line 11). If an element of vi violates

a corresponding bound constraint (i.e., vi /∈ S), then a

bound-handling method is applied to it such that vi ∈ S
(line 13). The details of each procedure (the index se-
lection, the mutation strategy, and the bound-handling

method) are described in Subsections 3.2, 3.1, and 3.3,

respectively.

After vi is repaired by a bound-handling method (if
needed), a child ui is generated by recombining xi and

vi (line 14). Binomial crossover [35], which is the most

basic crossover method in DE, is defined as follows:

ui
j =

{
vi

j if rand[0, 1] ≤ C or j = jrand

xi
j otherwise

, (2)

where the crossover rate C ∈ [0, 1] in (2) controls the

number of inherited variables from xi to ui. The de-

cision variable index jrand in (2) is randomly selected

from {1, ..., D}. Since binomial crossover only exchanges
elements between the parent individual xi and the mu-

tant vector vi, the child ui always satisfies the bound

constraints as long as xi, vi ∈ S.

41/41

Multiobjective Optimization MO algorithms MOEA/D

Nicola Beume, Boris Naujoks, and Michael Emmerich.
Sms-emoa: Multiobjective selection based on dominated
hypervolume.
European Journal of Operational Research, 181(3):1653–1669,
2007.

Bilel Derbel, Dimo Brockhoff, Arnaud Liefooghe, and
Sébastien Verel.
On the impact of multiobjective scalarizing functions.
In Parallel Problem Solving from Nature–PPSN XIII, pages
548–558. Springer, 2014.

Bilel Derbel, Jérémie Humeau, Arnaud Liefooghe, and
Sébastien Verel.
Distributed localized bi-objective search.
European Journal of Operational Research, 239(3):731–743,
2014.

41/41

Multiobjective Optimization MO algorithms MOEA/D

Bilel Derbel, Arnaud Liefooghe, Gauvain Marquet, and
El-Ghazali Talbi.
A fine-grained message passing moea/d.
In Evolutionary Computation (CEC), 2015 IEEE Congress on,
pages 1837–1844. IEEE, 2015.

V. Drouet, J.-M. Do, and S. Verel.
OPTIMIZATION OF LOAD-FOLLOW OPERATIONS OF A
1300MW PRESSURIZED WATER REACTOR USING
EVOLUTIONNARY ALGORITHMS.
Gecco Conference, 2021.

Marco Laumanns, Lothar Thiele, and Eckart Zitzler.
Running time analysis of evolutionary algorithms on a
simplified multiobjective knapsack problem.
Nat Comput, 3(1):37–51, 2004.

Bo Liu, Francisco V Fernández, Qingfu Zhang, Murat Pak,
Suha Sipahi, and Georges Gielen.

41/41

Multiobjective Optimization MO algorithms MOEA/D

An enhanced moea/d-de and its application to multiobjective
analog cell sizing.
In IEEE Congress on Evolutionary Computation, pages 1–7.
IEEE, 2010.

Gauvain Marquet, Bilel Derbel, Arnaud Liefooghe, and
El-Ghazali Talbi.
Shake them all!
In Parallel Problem Solving from Nature–PPSN XIII, pages
641–651. Springer, 2014.

L. Paquete, M. Chiarandini, and T. Stützle.
Pareto local optimum sets in the biobjective traveling salesman
problem: An experimental study.
In Metaheuristics for Multiobjective Optimisation, volume 535
of Lecture Notes in Economics and Mathematical Systems,
chapter 7, pages 177–199. Springer, 2004.

Ryoji Tanabe and Hisao Ishibuchi.

41/41

Multiobjective Optimization MO algorithms MOEA/D

Review and analysis of three components of the differential
evolution mutation operator in moea/d-de.
Soft Computing, 23(23):12843–12857, 2019.

Qingfu Zhang and Hui Li.
Moea/d: A multiobjective evolutionary algorithm based on
decomposition.
Evolutionary Computation, IEEE Transactions on,
11(6):712–731, 2007.

Eckart Zitzler and Simon Künzli.
Indicator-based selection in multiobjective search.
In Parallel Problem Solving from Nature-PPSN VIII, pages
832–842. Springer, 2004.

	Multiobjective Optimization
	

	MO algorithms
	

	MOEA/D
	

