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General outline

Partie n°1 [6h] : Bonnes pratiques en IA

Partie n°2 [3h] : Méthodes Ensemblistes

Partie n°3 [3h] : Autoencodeurs

Partie n°4 [3h] : Réseaux convolutionnels

Partie n°5 [6h] : Réseaux antagonistes génératifs

Partie n°6 [6h] : Traitement Naturel du Langage

Partie n°7 [7h] : Apprentissage par renforcement
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Outline of the day

Reminders, context of machine learning

Linear regression methods

Overfiiting
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Example

Problem

Predict the water in the ground

Problem

How to proceed ?
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Machine Learning

”Slopy” definition

Study, and design of systems able to learn from data.
(system : computational methods on a computer)

Example

A system able to distinguish spam, and non-spam emails.
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Machine Learning

E : set of all possible tasks.
S : a system (a machine)

A more formal definition [T.M. Mitchell, 1997]

T ⊂ E : set of tasks called training set
P : S × E → IR : performance metric of a system on tasks.

A system S learns from an experience Exp if
the performance of S on tasks T , measured by P, is improving.

P(Sbefore Exp,T ) ≤ P(Safter Exp,T )

Example

Task T : Classifier of emails during one day
Performance P : rejection rate of spams by S
Experience Exp : 1 weak of emails from users
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Modelization

Real-world
Problem

Learning
Problem

Model(s)
Modelization Computation

Definition : modelization

Transform a real-world problem
into an abstract learning problem

Modelization

Abstraction of the reality

Simplification of the reality :
number of parameters, noice, defaults, etc.

Keep relevant elements with respect to problem to learn
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Modelization

Real-world
Problem

Learning
Problem

Model(s)
Modelization Computation

Design of (good) model

Difficult step, but with a good team of :

Expert of the domain

Expert in algorithms, abstract representation

it is a very powerful experience



Introduction Linear regressions

Modelization

Real-world
Problem

Learning
Problem

Model(s)
Modelization Computation

Design of (good) model

Difficult step, but with a good team of :

Expert of the domain

Expert in algorithms, abstract representation

it is a very powerful experience

Tools for designing a model (representation)

Binary numbers, integer numbers, floating point numbers

Combinatoric structure (vector, permutation, list, graph,...)

Automata, abstract computing machines, etc.
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Learn from Data

To learn with a computer,
we need some information, in particular data

Definition

Data : ”The result of an observation on a population, or a sample”

Statistic, dictionnaire encyclopédique, Springer [Dodge, 2007]

A data is number, or a feature which gives an information
on an individual, an object, or an observation.

Example

Sébastien : ”I am 10 year old.”
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Variable

Link between one variable et data :
The features fluctuate according to the individual/object.

Notations :

Variable Xj

For the individual/object/observation i : Xij .

Variable Xage for the individuals 1, 2, . . . : X1age ,X2age , . . .
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Data type

Quantitative data
mesurable quantity, answer to ”how much ?”
allow computation (mean, etc.),
comparaisons (equality, difference, inferior/superior)

Numerical : ∈ IR
Discrete : number of values are limited

Qualitative data
quality or features
answer to the ”category”

Nominale (categorial), ex : eyes color
comparison (equality / difference)

Ordinal
Order between elements (degree to test, etc.)
comparison : superior / inférior

Structured data
relations, etc.

Tree, graph, complex data, etc.
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Typology according to available information

Supervised learning :
Learn from a set of examples :
{(xi , yi ) | i ∈ 1..n}

Non-supervised learning :
Learn from a set of example without labels (cf. clustering)
{xi | i ∈ 1..n}

Semi-supervised learning :
Learn from a set of examples with, and without labels

Reinforcement learning :
Learn when the actions on environment
are rewarded by a score

...



Introduction Linear regressions

Typology according to data

Regression : (xi , yi ) with yi ∈ IR

Classification : (xi , yi ) with yi discrete
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Univariate linear regression

Definition of the model [F. Galton, 1886]

model h
input value x −→ output value y

With univariate linear regression :

hβ(X ) = β0 + β1X

Define : Variance, co-variance, correlation.
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Univariate linear regression

Definition of the model [F. Galton, 1886]

model h
input value x −→ output value y

With univariate linear regression :

hβ(X ) = β0 + β1X

Find parameter β such that hβ(X ) is the closest to Y

Mean square error (MSE) function

Jx ,y (β) =
1

2n

n∑
i=1

(hβ(xi )− yi )
2
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Multivariate linear regression

Definition of the model

model h
input value x −→ output value y

With multivariate linear regression :

hβ(X ) = β0 + β1X1 + β2X2 + . . .+ βpXp

Mean square error function

Jx ,y (β) =
1

2n

n∑
i=1

(hβ(xi )− yi )
2

Define : covariance/correlation matrix.
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Computing parameters : time complexity

Ordinary Least Square (OLS)

After algebraic computation,

β = (X ᵀX )−1X ᵀy

where X is the matrix of predictor values with n lines of p
predictors, y the vector of predicted values

Complexity

O(p2n) for multiplication of X ᵀX
O(pn) for multiplication of X ᵀy
O(p3) to compute the LU factorization of X ᵀX and compute the
product (X ᵀX )−1X ᵀy

if n ≥ p then complexity is O(p2n),
if p < n then complexity is O(p3).
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Computing parameters : time complexity

Iterative method : gradient descent

Minimize Jx ,y (β) = 1
2n

∑n
i=1(hβ(xi )− yi )

2 with gradient descent

Gradient of Jx ,y (β) is a close formula (time complexity O(np))

Gradient step for each variable j :

βj := βj − α
∂

∂βj
J(β)

The time complexity for each ”classical” gradient step O(pn), and
we can expect around p steps...

Any gradient variant can be used :
stochastic gradient, nesterov, adam, nadam, etc.
Conjugate gradient (O(p2n))
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Practice with scikit-learn

Scikit-learn is a library in python with MLmodels, and related tools.
Open source, BSD license, https://scikit-learn.org/

From example Ordinary Least Square

from sklearn import linear_model

reg = linear_model.LinearRegression()

reg.fit ([[0, 0], [1, 1], [2, 2]], [0, 1, 2])

print(reg.coef_)

see code : linear reg.ipynb and url :
https://scikit-learn.org/stable/auto_examples/linear_

model/plot_ols.html#

sphx-glr-download-auto-examples-linear-model-plot-ols-py

https://scikit-learn.org/
https://scikit-learn.org/stable/auto_examples/linear_model/plot_ols.html#sphx-glr-download-auto-examples-linear-model-plot-ols-py
https://scikit-learn.org/stable/auto_examples/linear_model/plot_ols.html#sphx-glr-download-auto-examples-linear-model-plot-ols-py
https://scikit-learn.org/stable/auto_examples/linear_model/plot_ols.html#sphx-glr-download-auto-examples-linear-model-plot-ols-py
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Practice alone (1)

Use the data set cars from data01/cars.csv

1. Read the data with pandas :

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

df = pd.read_csv(’data01/cars.csv’)

2. Describe the data with head(), info(), describe()
3. Compute a linear model, and plot it !
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Practice alone (2)

Use the data set basketData09.csv from data01

What is the most important variable to predict the ”average points
per game” height, or weight ?

Use the data set advertising.csv from data01

What is the most important variable to predict the ”sales” ?
Is there a possible combined effect of variables ?
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Interpretation of a linear model

Linear models are simple to interpret :

Effect of a single predictor :
when the predictor xj increases by a factor 2,

then the response is increased by the term 2βj

Importance of predictors can be compared :
when the model is y = 0.001x1 + 10x2 + ε
then variable x2 is more important than x1

(if the scale of predictors are similar ! ! !)

Sometime, it is more useful :
to understand the relation between variables, and response
than having an accurate model of prediction of response

⇒ Tradeoff between Explanation vs. Prediction, toward XAI...
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Scaling the data

Don’t forget to scale your data :

Between minimum and maximum :
zi = xi−min[x]

max[x]−min[x] , then zi ∈ [0, 1]

Using mean, and standard deviation :
zi = xi−x̄

σ where x̄ , and σ are mean, and std dev. of xi for all i ,
then, E [z ] = 0, and Var[z ] = 1

Robust scaling :
zi = xi−med[x]

q3[x]−q1[x] where med[x ] is the median, and q1[x ], q3[x ]
first, and third quartile of xi for all i ,
then, med[z ] = 0

See StandardScaler, and Pipeline in scikit learn
See also the exo01.py
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Binary classifier

Goal

Find a function f such that ∀x , f (x) ∈ {0, 1}

Approach

Transform the model h into a binary response :

r(x) =

{
0 si h(x) < 0.5
1 si h(x) > 0.5

The model h is interpreted as probability function :
h(x) ∈ [0, 1], and h(x) = Pr(y = 1|x).

Sigmoid fonctions

Transform a real number from IR into [0, 1] using ;

hyperbolic tangent, inverse of normal density, logistic function
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Logistic regression

Model : linear model composed with logistic function

hβ(X ) = g(β0 + β1X1 + β2X2 . . .+ βnXn) with g logistic function

0

0.5

1

−6 −4 −2 0 2 4 6

Loss function : cross-entropy

jx,y (h) = −Pr(y = 1) log Pr(h(x) = 1)− Pr(y = 0) log Pr(h(x) = 0)
which gives :
jx,y (h) = −y log(h(x))− (1− y) log(1− h(x))

Jx,y (β) =
1

m

m∑
i=1

jxi ,yi (hβ)
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Multiclass case

Goal

Find a function : f (x) ∈ {0, 1, . . . , k}

For each class c , we build a binary classifier h(c) which
measures the probability y ∈ c (and y 6∈ c)

The predicted class is the class with the highest probability :

ypred = argmaxc∈C h(c)(x)


