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General outline

Partie n°1 [6h] : Bonnes pratiques en IA

Partie n°2 [3h] : Méthodes Ensemblistes

Partie n°3 [3h] : Autoencodeurs

Partie n°4 [3h] : Réseaux convolutionnels

Partie n°5 [6h] : Réseaux antagonistes génératifs

Partie n°6 [6h] : Traitement Naturel du Langage

Partie n°7 [7h] : Apprentissage par renforcement
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Outline of the day

Overfiiting

Regularization methods

Model selection
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Polynomial regression

Definition of the model

With polynomial linear regression :

hβ(X ) = β0 + β1X1 + β2X2 + β3X
2
1 + β4X

2
2 + β5X1X2 + ...

Mean square error function

Jx ,y (β) =
1

2m

m∑
i=1

(hβ(xi )− yi )
2

Linear regression is simple, interpretable, easy to write,
and can be generalized with a sum of any set of functions {ϕi} :

hβ(X ) = β0 + β1ϕ1(X ) + β2ϕ2(X ) + β3ϕ3(X ) + . . .+ βpϕp(X )

but...
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Practice alone (3)

Use the data set cars from data01/cars.csv

1. Compute a regression of degree 2.
2. What is the best polynomial regression ?

See PolynomialFeatures if needed
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Errors of models

Relation between errors

Learning error : error rate on the training set

”True” error : error rate on the all possible examples

taille ens. d'apprentissage

tx
 e

rr
eu

r erreur "vraie"
erreur entrainement



Overffiting Regularization Model selection

Overfitting

Error vs. Model complexity

Too much learning ⇒ overfit of the model on the training set
⇒ Loss of generalization capacity ≈ Learning ”by heart”

complexité 
du modèle
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Complexity metrics :
polynomial degree, number of independent terms, etc.
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Bias-variance relation

Suppose a function f to learn such that yi = f (xi ) + εi ,
where εi is the noise a null mean, and variance σ2.

{(xi , yi )} a training set, h a learnt model, and h̄ the ”average”
model learn on all possible sets.

The variance of a model can be decomposed (see proof) by :

E [(h(xi )− yi )
2] = E [(h(xi )− f (xi ))2] + E [(f (xi )− yi )

2]

Relation biais/variance

E [(h(xi )− yi )
2] =

E [(h̄(xi )− f (xi ))2] + E [(h(xi )− h̄(xi ))2] + E [(f (xi )− yi )
2]

Variance of model = Bias2 + Variance + Variance of Noice
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Overfitting : bias-variance tradeoff

Error from the bias :
difference between
predictions and true values

Erreur from the variance :
variability of the prediction
for one given data x

Source Scott Fortmann-Roe :
http://scott.fortmann-roe.com/docs/BiasVariance.html

http://scott.fortmann-roe.com/docs/BiasVariance.html
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Goodness of fit : Coefficient of determination

Definition

R2 = 1− Variance of the residus

Variance of the data

with residus : ri = hβ(xi )− yi

The R2 is the part of variance of f explained by the model h

R2 ≤ 1, but R2 can be negative

R2 = 0 when the model h is equal to mean value,
i.e. when h(x) = E [yi ].

R2 < 0 when the model h is worst than h(x) = E [yi ]

R2 = 1 when the model h is perfect, h(x) = f (x) on the set
to estimate R2

In general, but depending on the context,
a relevant R2 is above 0.8.
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Evaluation of a model quality

Technique

Partitioning the set into :

Training set (≈ 70%)

Test set, independent one (≈ 30%)

Error rate, or R2, can be estimated without bias on the test set.

Drawback

An initial large set is required

Dilemma :

The larger the test set, the better the estimation is
The larger the training set, the better the model is
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Resampling method

Allow to estimate the generalization error

K -folds cross-validation

Partition randomly the set into K blocks
For each blok k,

Design a model using the k − 1 other training blocks
Compute the test error ek on the block k

Compute the mean of errors ek

Other techniques :

Leave-one-out (K = n)

Bootstrap, bagging, etc.
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Exercice

See example in scikit-learn ”Underfitting vs. Overfitting” :

Polynomial regression of f (x) = cos( 3π
2 x) with polynomial of

degree 1, 4, and 10

from sklearn.pipeline import Pipeline

from sklearn.preprocessing import PolynomialFeatures

from sklearn.linear_model import LinearRegression

polynomial_features = PolynomialFeatures(degree=degrees[i],

include_bias=False)

linear_regression = LinearRegression()

pipeline = Pipeline([

("polynomial_features", polynomial_features),

("linear_regression", linear_regression) ])

pipeline.fit(X[:, np.newaxis], y)
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Why there is over fitting ?

In the context of glm with {ϕi} having ”good” properties.
Suppose that the true function f is the sum of c terms :

f (X ) = β0 + β1ϕ1(X ) + β2ϕ2(X ) + . . .+ βcϕc(X )

And we would like to find a model hβ̂ with p terms :

hβ̂(X ) = β̂0 + β̂1ϕ1(X ) + β̂2ϕ2(X ) + β3ϕ3(X ) + . . .+ β̂pϕp(X )

Indeed, we would like to solve the system :

X β̂ = Y

with X is matrix of dimension n × p : X = [. . .] ...

if rank(X ) ≈ n ≤ p + 1, there is an exact solution β̂ (interpolation),
but, maybe this solution can have more terms p than c ...

If n > p + 1, no garanti to have an exact solution of the system.
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Toward a method to fight overfitting

f (X ) = β0 + β1ϕ1(X ) + β2ϕ2(X ) + . . .+ βcϕc(X )

hβ̂(X ) = β̂0 + β̂1ϕ1(X ) + β̂2ϕ2(X ) + β̂3ϕ3(X ) + . . .+ β̂pϕp(X )

{x1, x2, . . . , xn}

Intuitively, the sample size should be around the p + 1,
and p should be around c ...

Idea

Translate this hypothesis based on intuition to the model design :
Find coeff. such that values are close to the original function,
In other words, when the number of predictors is large,

the value of coefficients should be constraint to zero
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Regularization methods, sparse approach

Goal

Reduce the complexity of the model (cf. Ockham razor),
i.e the ”size” of the coefficients

Reduce the variance of the estimated coefficients

Method

Modify the function to minimize,
add a penalty according to model complexity :

Jx ,y (β) = Lβ(x , y) + λ Ω(β)

Lβ(x , y) : training error (MSE, etc.),
distance between data and prediction of the model

Ω(β) : regularization cost (model complexity),
distance between βj and 0

λ ∈ IR : tradeoff parameter between error, and complexity

[ or, minimize Jx,y (β) = Lβ(x , y) such that Ω(β) ≤ t ]
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Regularization function

Jx ,y (β) = Lβ(x , y) + λ Ω(β)

A Lk norm can be used : Ω(β) = ‖β‖kk
• L2 Norm : Ridge regression [ Hoerl et al., 1970 ] [4]

Ω(β) = ‖β‖2
2 =

p∑
j=1

β2
i

• L1 Norm : Lasso regression [Tibshirani, 1996] [7]

Ω(β) = ‖β‖1 =

p∑
j=1

|βj |

The shape of lines of equality are different, and the model :

beta1

beta2

training error

regularization cost

beta1

beta2
training error

regularization cost
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Other regularization function

beta1

beta2

training error

regularization cost

beta1

beta2
training error

regularization cost

• Ridge regression : all coefficients are pushed to be small
• Lasso regression : the number of non-zero coeff. is minimized
• ElasticNet regression : combinaison of the ridge and lasso

Ω(β) =

p∑
j=1

((1− α)β2
j + α|βj |)

The additional parameter α ∈ [0, 1] tunes the tradeoff between
ridge, and lasso parts

Don’t forget to normalize the predictors !
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Time complexity to compute the sparse regression

Jx ,y (β) = Lβ(x , y) + λ Ω(β)

• L2 Norm : Ridge regression

Ω(β) = ‖β‖2
2 =

p∑
j=1

β2
i

The gradient can be computed. Same complexity as before with
simple MSE : O(p3) (suppose that p larger than n)

• L1 Norm : Lasso regression

Ω(β) = ‖β‖1 =

p∑
j=1

|βj |

The gradient is not defined for the absolute value on zero.
A new strategy is required to minimize Lasso criterium...
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Coordinate descent

Principle

Optimize iteratively variable per variable the objective using
gradient descent.
Here, the objective is Jx ,y (β) = Lβ(x , y) + λ Ω(β)

Set each coefficient to zero : βj = 0
repeat

for j = 1 . . . p do
Compute gradient of var. j : g(βj) = ∂Lβ(x , y) + λ ∂Ω(β)
Gradient step to update var. j : βj = βj − α g(βj)

end for
until stopping criterium is false

Comment : ∂Ω(β) is computed using sub-gradient :
= −1 if βj < −λ, = 0 if −λ ≤ βj ≤ λ, and = 1 if λ < βj

As a consequence, λ tunes the importance of the regularization part.
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Iterative selection methods

Position of the problem

Selection of non-zero terms from the p terms :

hβ̂(X ) = β̂0 + β̂1ϕ1(X ) + β̂2ϕ2(X ) + β̂3ϕ3(X ) + . . .+ β̂pϕp(X )

⇒ optimization problem with the ”shape” (discrete),
and the weights (continuous) of terms as decision variables

How many different different models (selection) from p terms ?

Greedy heuristics

• Backward selection : From the full model with p predictors,
iteratively remove the worst interesting predictor

• Forward selection : From the empty model with no predictor,
iteratively add the most interesting predictor

A lot of methods have been proposed to compute the Lasso regression.

Please read carefully to documentation of the used method.



Overffiting Regularization Model selection

LARS regression [Efron et al. 2004] [3]

Algorithm

Set each coefficient to zero : βj = 0
repeat

Find the most correlated predictors xj1 with y

Increase βj1 (following the correlation sign) until another predictor
xj2 has much correlation with r = y − hβ(x)

Increase (βj1 , βj2 ) (following the join direction) until another
predictor xj3 has much correlation with r = y − hβ(x)

Increase (βj1 , βj2 , βj3 ) . . .
until all predictors are used in the model
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LARS regression [Efron et al. 2004] [3]

In two dimension :

y2
^

x1

x2 x2

y1
^ cor(y,   )

=proj(y)

cor(y,   )x2

x1

bissec(x ,x )1 2

α u2 2
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Comments on LARS

Pros

Time complexity similar to OLS : O(p3)

Take care about correlated variables

Efficient when p >> n

Lasso path (see after)

Cons

Less efficient when :

High dimensional data

a lot of noice, and high dimensional multicolinear independent
variables
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Lasso path

see example https://scikit-learn.org/stable/auto_examples/

linear_model/plot_lasso_lars.html
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LASSO Path

Absolute value of each coefficient as a function of
∑

j |βj | < t

https://scikit-learn.org/stable/auto_examples/linear_model/plot_lasso_lars.html
https://scikit-learn.org/stable/auto_examples/linear_model/plot_lasso_lars.html
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Other regularization technique

Regularization is an old, and still active subject. A lot of
techniques are proposed every year depending on the context

Dropout [ Srivastava et al., 2014 ] [6]

Proposed for neural network (can be extended to other models ?)

At each gradient step (epoch in the language of NN),
a neuron and its connexions are deactivated with probability p.

During test phase, all neurons are used, but weights are multiplied
by factor p

Intuitive idea

Select at random some predictors at each steps :
To train several sub-models in parallel,
To escape from local optima,
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Parameter tuning

Usually ML algorithms have some parameters, called
meta-parameters. For each parameter value, the model could be
different.

For example :

parameter λ of sparse methods,

parameters α in ElasticNet

...

So, a set of models is available.

How to select a ”good” model from a set ?
≈ How to tune the meta-parameters ?
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Selection based on a criterium

To select a model from a set (finite or not) of models H,
a metrics is used to compare models.

The selected model is the best model according to the metric :

h? = argmaxh∈HP(h)

where P is a quality metric of model
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Validation set

X = Xtrain ∪ Xtest

Test set can not be used (risk of overfitting) for model selection.
The train set is divided using a validation set :

Xtrain = Xtrain′ ∪ Xvalidation

Each possible model (meta-parameters) can be compared using the
quality estimated on validation set : P(h) = error(h,Xvalidation)

When a model is selected, the full train set can be used to
compute the final model.
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Cross-validation for model selection

A K-fold cross-validation on the train set can be used to compare
models. Xtrain is partitioned into K folds :

Xtrain = Xfold1 ∪ . . . ∪ XfoldK

The performance of model h is :

P(h) = E [error(h,Xfoldk )]

Then, again, the training set can be used with the selected
meta-parameter/model.
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Akaike information criterion (AIC)

Akaike information criterion (AIC), from Hirotugu Akaike, 1971 [1]
[2], is an information criterion (remember Shanon, entropy, etc.)
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Likelihood (vraisemblance)

Definition

L(θ | x) = Pθ(X = x) = P(X = x | θ)

”The probability of the value x of X for the parameter value θ”,
i.e. conditional probability of observing x from the knowledge of
parameter θ.

Suppose that a fait coin pH = 0.5.
If we observe twice the head HH :
L(pH = 0.5 | HH) = P(HH | pH = 0.5) = 0.25
Compute the the likelihood for hypothesis pH = 0.3, and pH = 0.7.

Indeed, this is basis of the maximum likelihood estimation (MLE) :
θ̂ = argmaxθ L(θ | y)
and using Bayes’ rule :
P(θ | x) = P(x | θ)P(θ)/P(x) ∝ L(θ | x) . prior(θ)
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Likelihood ratio

Likelihood ratio

Λ(θ1 : θ2) = L(θ1|x)
L(θ2|x)

likelihood between two hypothesis (parameters).
Can be use to compare (stat. test) two hypothesis, and in Bayesian
inference (it removes the proportional part) :
O(θ1 : θ2 | x) = O(θ1 : θ2) . Λ(θ1 : θ2)

Relative likelihood

R(θ) = L(θ|x)

L(θ̂|x)
where θ̂ is the estimate of the maximum likelihood.

Log-likelihood

logL(θ | x) : maximizing likelihood, or log-likelihood is equivalent

more simple since log(ab) = log(a) + log(b), more accurate (precision of
digits), and quicker to compute.

Measure the quantity of information !
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Akaike information criterion (AIC)

Definition

AIC = 2k − 2 ln L̂

where :
k : number of estimated parameters in the model
L̂ : estimated likelihood of the model

The model with the smallest value is preferred

AIC estimates the relative information lost of the model from
optimal model θ̂.
Tradeoff between accuracy of the model (likelihood), and model
complexity (n. of param.)

Indeed, AIC compares two models g1, and g2 from an optimal (unknown)
model f using relative likelihood. Be careful, the estimatation is only
valid asymptotically (when the number of data is large)
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Bayesian information criterion (BIC) [5]

Definition

BIC = k ln n − 2 ln L̂

where :
k : number of estimated parameters in the model
n : number of samples
L̂ : estimated likelihood of the model

The number of parameter is k = p + 2 for multi-linear model.
The model with the smallest value is preferred

Tradeoff between accuracy of the model, and model complexity,
but the larger penalty (2 vs. n) compare to AIC

BIC can be used to approximate the likelihood of the model
knowing the data. It converges to the true value when n is large
(on the contrary of AIC).
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In practice with Scikit-learn

https://scikit-learn.org/stable/auto_examples/linear_

model/plot_lasso_model_selection.html

https://scikit-learn.org/stable/auto_examples/linear_model/plot_lasso_model_selection.html
https://scikit-learn.org/stable/auto_examples/linear_model/plot_lasso_model_selection.html
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