Introduction to optimization and machine learning Lesson 1: Introduction

SÉBASTIEN VEREL

Laboratoire d'Informatique, Signal et Image de la Côte d'opale (LISIC) Université du Littoral Côte d'Opale, Calais, France http://www-lisic.univ-littoral.fr/~verel/

March, 2023

General outline

- Introduction to optimization problems
- Introduction to machine learning
- Fundamentals of optimization methods
- Fundamentals of machine learning methods
- Practice of some algorithms using python

Outline of the day

- Definition of optimization problems
- Definition of learning problems
- Optimization vs. machine learning

Artificial intelligence

AI = Learning and Reasoning

Main topics [1]

- Problem-solving
- Knowledge, reasoning, and planning
- Uncertain knowledge and reasoning
- Machine Learning
- Communicating, perceiving, and acting
- [1] Artificial Intelligence : A Modern Approach, Fourth edition, 2020, Stuart Russell and Peter Norvig.

Artificial intelligence

AI = Learning and Reasoning

Main topics [1]

- Problem-solving
- Knowledge, reasoning, and planning
- Uncertain knowledge and reasoning
- Machine Learning
- Communicating, perceiving, and acting

And it is not only computer science, nor mathematics research field

[1] Artificial Intelligence: A Modern Approach, Fourth edition, 2020, Stuart Russell and Peter Norvig.

Problem Solving using optimization

A lot of problems consists of finding a "good" solution(s) using limited/comptable ressources

Real-world problems

Example of real-world problem

Products are in a depot

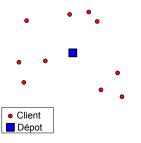
Goal: Deliver products to customers

Real-world problems

Example of real-world problem

Products are in a depot

Goal: Deliver products to customers



Abstract problem

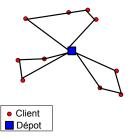
Minimize the travel distance (cost) with respect to contraints

Real-world problems

Example of real-world problem

Products are in a depot

Goal: Deliver products to customers



Abstract problem

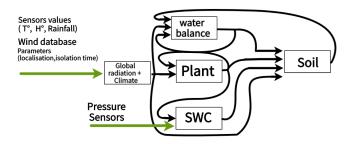
Minimize the travel distance (cost) with respect to contraints

Another example [A. Dubois, F. Teytaud, E. Ramat]

Farming irrigation model for potatoes crop cultivation ^a

- Goal :
 - Decision support provided to farmers to manage their irrigation plans
- How :
 - Combination of several biological computational models
- a. In collaboration with the Weenat company, PhD thesis of A. Dubois, 2020.

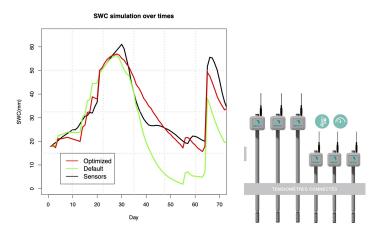
Computational model



- Inputs: initial pressure, temperature, wind, rainfall, ...
- Output : Soil Water Content,

Block model defined by 38 parameters (real values)

Soil Water Content predictions



Model calibration

 Minimize the distance between sensor data, and model simulation

Solving real-world problems

Throw this example, different elements are enlighted :

- Set of all candidate solutions :
 all possible travels
 all possible parameters values
- Cost function : travel distance distance data/model

The problem is solved when a candidate solution with minimal cost is found (computed)

Single-objective optimization

Definition

An optimization problem is a couple (\mathcal{X}, f) with :

• Search space : set of candidate solutions

Objective fonction : quality criteria (or non-quality)

$$f: \mathcal{X} \to \mathbb{R}$$

 \mathcal{X} discrete : combinatorial optimization

 $\mathcal{X} \subset \mathbb{R}^n$: numerical optimization

Solve an optimization problem (minimization)

$$\mathcal{X}^* = \operatorname{argmin}_{\mathcal{X}} f$$

or find an approximation of \mathcal{X}^{\star} .

White-box optimization scenario

Objective function f for $x \in \mathbb{R}^d$,

$$f(x) = \frac{x_2^3 e^{-0.4x_1}}{\sum_k e^{x_k}}$$

White-box optimization definition

Analytic expression of the objective function f is known

In this case, usually the objective fonction is :

• continuous, and differentiable (if we are lucky)

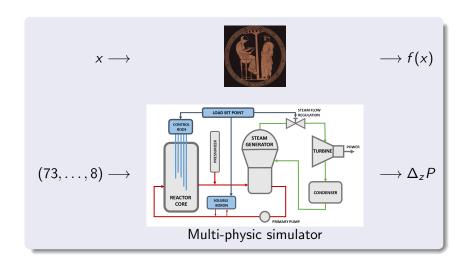
Black-box optimization scenario

No information on the objective function definition f

Objective fonction:

- can be irregular, non continuous, non differentiable . . .
- given by a computation or a simulation

Real-world black-box optimization : an example PhD of Valentin Drouet, Saclay Nuclear Research Centre (CEA), Paris



Optimization problem solving

Solve an optimization problem (minimization)

$$\mathcal{X}^* = \operatorname{argmin}_{\mathcal{X}} f$$

or find an approximation of \mathcal{X}^{\star} .

Multi-objective optimization

Definition

An optimization problem is a couple (\mathcal{X}, f) with :

Decision space : set of candidate solutions

Objective fonction : quality criteria (or non-quality)

$$f: \mathcal{X} \to \mathbb{R}^d$$

d : number of objective, criteria

d=2: bi-objective optimization

d = 3, 4, 5: multi-objective optimization

d > 5: many-objective optimization

Solve an multi-objective optimization problem

Pareto optimal set : See later

Do you have an example of optimization problem?

Exercice

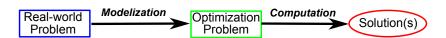
Write examples of optimization problems numerical, discrete, black/white-box, etc.

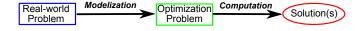
Solving methodology

2 steps:

- Modelization :
 - Defined the optimization problem
- Computation :

Compute an optimal solution (or near optimal)



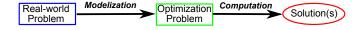


Definition: modelization

Transform a real-world problem into an abstract optimization problem

Modelization

- Abstraction of the reality
- Simplification of the reality : number of parameters, noice, defaults, etc.
- Keep relevant elements with respect to problem to solve

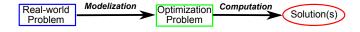


Design of (good) model

Difficult step, but with a good team of :

- Expert of the domain
- Expert in algorithms, abstract representation

it is a very powerful experience



Design of (good) model

Difficult step, but with a good team of :

- Expert of the domain
- Expert in algorithms, abstract representation

it is a very powerful experience

Tools for designing a model (representation)

- Binary numbers, integer numbers, floating point numbers
- Combinatoric structure (vector, permutation, list, graph,...)
- Automata, abstract computing machines, etc.

Typology of optimization problems

Classification according to decision variables

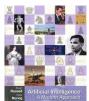
- Combinatorial optimisation :
 - search space is discrete (sometime finite): NP-hard
- Numerical optimization : search space is subset of \mathbb{R}^d
- Others : discrete and numerical, program, morphology, topology, etc.

Classification according to information

- White-box optimisation :
 - Some useful properties are known
- Black-box optimization :
 - A minimum of a priori information is used Computation time can be expensive (simulator, in vivo, etc.)
- **Grey-box optimization**: in between

Bibliography

Data Science : fondamentaux et études de cas, Machine Learning avec Python et R
Eric Biernat, Michel Lutz, Eyrolles, 2015.



Artificial Intelligence : A Modern Approach, Fourth edition, 2020, Stuart Russell and Peter Norvig.

Example

Problem

Predict the water in the ground

Problem

How to proceed?

Machine Learning

"Slopy" definition

Study, and design of systems able to learn from data. (system : computational methods on a computer)

Example

A system able to distinguish spam, and non-spam emails.

Machine Learning

E : set of all possible tasks.S : a system (a machine)

A more formal definition [T.M. Mitchell, 1997]

 $T \subset E$: set of tasks called *training set*

 $P: \mathcal{S} \times E \to {\rm I\!R}$: performance metric of a system on tasks.

A system S learn from an experience Exp if the performance of S on tasks T, measured by P, is improving. $P(S_{\text{before Exp}}, T) \leq P(S_{\text{after Exp}}, T)$

Example

Task T : Classifier of emails during one day Performance P : rejection rate of spams by SExperience Exp : 1 weak of emails from users

Learning from L. Valliant, 1984 [Turing award, 2010]

PAC ("Probably Approximately Correct")

In model of PAC Learning under the uniform distribution on X, a learning problem is defined with a concept class C, which is just a collection of functions $f: X \to \mathbb{R}$; "We learn a class C of functions".

A learning algorithm A for C is a randomized algorithm which has limited access to an unknown target function $f \in \mathcal{C}$.

The two access models are:

- random : A can draw pairs (x, f(x)) where $x \in X$ is uniformly random
- queries : A can request the value f(x) for any $x \in X$ of its choice.

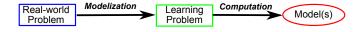
A is given as input an accuracy parameter $\epsilon \in [0, 1/2]$.

Output of A: a hypothesis function $h: X \to \mathbb{R}$.

PAC learning

A learns \mathcal{C} with error ϵ if for any $f \in \mathcal{C}$, with high probability,

A outputs an h which is ϵ -close to f: dist $(f, h) < \epsilon$.

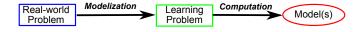


Definition: modelization

Transform a real-world problem into an abstract learning problem

Modelization

- Abstraction of the reality
- Simplification of the reality : number of parameters, noice, defaults, etc.
- Keep relevant elements with respect to problem to learn

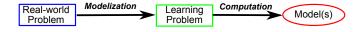


Design of (good) model

Difficult step, but with a good team of :

- Expert of the domain
- Expert in algorithms, abstract representation

it is a very powerful experience



Design of (good) model

Difficult step, but with a good team of :

- Expert of the domain
- Expert in algorithms, abstract representation

it is a very powerful experience

Tools for designing a model (representation)

- Binary numbers, integer numbers, floating point numbers
- Combinatoric structure (vector, permutation, list, graph,...)
- Automata, abstract computing machines, etc.

Learn from Data

To learn with a computer, we need some information, in particular data

Definition

Data: "The result of an observation on a population, or a sample"

Statistic, dictionnaire encyclopédique, Springer [Dodge, 2007]

A data is **number**, or a **feature** which gives an **information** on an individual, an object, or an observation.

Example

Sébastien: "I am 10 year old."

Variable

Link between one variable et data :

The features fluctuate according to the individual/object.

Notations:

- Variable X_j
- For the individual/object/observation $i: X_{ij}$.

Variable X_{age} for the individuals $1, 2, \ldots : X_{1age}, X_{2age}, \ldots$

Data type

- Quantitative data
 - mesurable quantity, answer to "how much?" allow computation (mean, etc.),
 - comparaisons (equality, difference, inferior/superior)
 - Numerical : ∈ IR.
 - Discrete: number of values are limited
- Qualitative data
 - quality or features
 - answer to the "category"
 - Nominale (categorial), ex : eyes color comparison (equality / difference)
 - Ordinal
 - Order between elements (degree to test, etc.) comparison : superior / inférior
- Structured data

relations, etc.

- Tree, graph, complex data, etc.

Several variables X_1, X_2, \ldots, X_j for j de 1 à p represent features of individual/objets/observations. Number of individuals i from 1 to n.

Value of variable j for the individual i is denoted by x_{ij}

$$X = \begin{pmatrix} x_{11} & \cdots & x_{1p} \\ \vdots & \ddots & \vdots \\ x_{n1} & \cdots & x_{np} \end{pmatrix}$$

			Variables	
		X ₁	Χ _j	X _p
Individus	1			
	i		x _{ij}	
드	n			

Typology according to available information

Supervised learning :

Learn from a set of examples :

$$\{(x_i,y_i)\mid i\in 1..n\}$$

Non-supervised learning :

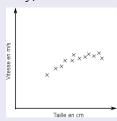
Learn from a set of example without labels (cf. clustering)

$$\{x_i \mid i \in 1..n\}$$

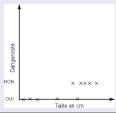
- Semi-supervised learning :
 - Learn from a set of examples with, and without labels
- Reinforcement learning :
 - Learn when the actions on environment are rewarded by a score
- ...

Typology according to data

• Regression : (x_i, y_i) with $y_i \in {\rm I\!R}$



• Classification : (x_i, y_i) with y_i discrete



Do you have an example of learning problem?

Exercice

Write examples of learning problem regression, classification, supervised, non-supervised, etc.

Machine Learning and Optimization

Similarities, and differences between ML and optimization?

Machine Learning and Optimization

Similarities, and differences between ML and optimization?

Machine learning, optimization share many things:

- Abstract representation of real-world
- Information processing
- Data guided methods

Machine learning, optimization are different :

- Learn: model of data
- Optimization : solution from a set of possible ones

Machine Learning and Optimization

Similarities, and differences between ML and optimization?

Machine learning, optimization share many things:

- Abstract representation of real-world
- Information processing
- Data guided methods

Machine learning, optimization are different :

- Learn: model of data
- Optimization : solution from a set of possible ones

But what is the difference between a model, and a solution...

AI: Machine Learning, Optimization, perception, etc.

Learning:

Minimize an error function

```
\{M_{\theta}\}: models to learn on data
Search \theta^{\star} = \arg\min_{\theta} Error(M_{\theta}, data)
```

According to the model dimension, variables, error function, etc., huge number of optimization algorithms

Optimization:

Learn a design algorithm

```
\{A_{\theta}\}: search algorithms for problems (X,f)
Learn \theta^{\star} such that x=A_{\theta^{\star}}(X,f) is a good solution
```

According to the class of algorithms, search spaces, functions, etc., huge number of learning algorithms