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Where am I from ?

source : OpenStreetMap
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Situation map : Université du Littoral Côte d’Opale

LISIC : laboratory of computer science, signal, image

Boulogne (fishing port), Calais (transportation port),
Dunkerque (industrial port), Saint Omer (glass industry).

 Lille (0h30), London (1h), Bruxelles (1h15), Paris (1h30), Amsterdam (2h)

source : OpenStreetMap
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Context

Mobility system Nuclear energy system

A priori, each domain is very different
But, share :

Design problems for new perspectives,

Inaccessible (cost) quantities, scales, etc.
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Solving design problems, etc.

Solving optimization problems (mono- or multi-objective)

Using the cognitive, and social abilities of humans :
expert knowledges, evaluation of risk, uncertainties, divide

into sub-problems, complex reasoning, etc.

Using the computational, and memorization abilities of
machines :

automatic, data, formal language, speed, multi-scale, etc.

Main AI approaches for automatic solving

Algebraic approach : algebraic, or formel model

Digital twin approach :
numerical model, and numerical simulation
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Comparaison of approaches

Algebraic approach

Formal model

Aggregated variables, noice
(demand, incertainties),
contraints,...

Artificial or real-like problem
instances

Offline

Tools :
cplex, gurobi, constr. prog.,

local search, ea, etc.

Digital twin approach

Low level model

Complex interactions

Flow of data : sensor, etc.

Offline, Online

Tools :
simcore, simio, matsim, devs,...
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Consequences for automatic solving

Algebraic approach

Pros :

Exploitation of the algebraic
properties (fast to compute)

Explicit, and synthetic model

Difficulties :

Design of the model :
creation of languages, etc.

Digital twin approach

Pros :

Low level description

Tests, visualization

Difficulties :

≈ Black-box : (x , f (x))

Costly simulation
(time, energy)

Indeed, not only ”solving”, but also support of decision making :
before, during, and after the optimization process
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Digital twin for mobility system

F. Leprêtre, V. Marion, C. Fonlupt, S. Verel (LISIC) - thesis 2017 - 2020.
H. Aguirre, R. Armas, K. Tanaka (Shinshu Univ., Nagano, jp)

Partner : Calais City, Marie Capon, (expertise, and funding)

SIALAC benchmark of mobility

Different and, futur scenario : home, agents, activity

Two problems

Tuning of traffic light

Bus stop position
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SIALAC benchmark of mobility
Leprêtre, F., et al. Applied Soft Computing, 2019 [12]

Number of agents {5, 10, 15, 20} × 103

Home {1 cluster, 4 clusters, uniform}
Activity {1 cluster, 4 clusters}

Signals systems {50%, 75%, 100%}
72 scenario using MatSim (Multi-Agent Transport Simulation)

Goal

Show to the partner what it is possible with such tools

Design robust optimization algorithms for mobility problems
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Traffic light problem for Calais, and Quito cities

Space : 33 (Calais, France), 70 (Quito, Equator) intersections
search space dim. ×4 integer variables

Criteria : minimize average travel time (black-box problem)

Computational time per simulation ≈ 1 minute
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Gradient free optimization algorithms

Stochastic Hill Climber

x ← initialize random solution
repeat

x
′ ← mutate x

x ← x
′
if f (x ′) < f (x)

until stopping criterion met

Evolutionary Algorithm

P = {x1, . . . , xµ} ← rnd. init.
repeat
Pgenitor ← selection from P
Pchildren ← breed Pgenitor

P ← replace P ∪ Pchildren

until stopping criterion met

mutate : random variation of candidate solution

Tradeoff exploration / exploitation : mutate / selection

How to tune the mutation operator ?
i.e. Where to explore ?
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Surrogate, and model-based approaches

According to the context, the search strategy can be different.

When the evaluation time of a single candidate solution is :
• short : try, and test strategy (local search, EA, etc.)

a test is fast, so multiple tests are possible.
Memory ”less” strategy.
ex. : re-computation of a solution

• long : model based strategy
spend more time to design a new candidate solution,
aggregation of information on the problem (model), and test
ex. : 200 evaluations available on problem of dimension 100
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Structure of real-world problems

Intuitively

Real-world problem instances are often ”structured” :

Local sub-problems are not random,

Interdependency between sub-problems are not random.

Importance of variables

Consequence : some variables are more impactful than others.

Examples

Isolated traffic lights are less impact on travel time
than central traffic lights

How to detect important variable to design a model of problem ?
Expert knowledge, or more automatically....
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Fitness landscape : a model of the search space

Fitness landscape (Wright 1920)

S : set of candidate solutions, search space

f : S → IR : objective function

N : S → 2S , neighborhood relation between solutions

• Geometry of the fitness
landscape :

Features/metrics
are correlated to

algorithm performance

⇒ Toward automatic design (tuning/control) of algorithms
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Offline model of problem

Importance degree of variable i

δi = |f (mutatei (x))− f (x)|

Estimation : Random walk on fitness landscape

Sequence of neighboring solutions : (x0, x1, x2, . . .)
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Number of evaluations
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4 activities

Offline model, before running the algorithm (expert knowledge ?) :
Importance δi associated to each var. i
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Add explainable model to optimization

0.0
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|  δt  |
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⇒ Explainable model (cf. XAI) defined with ”score”,
Improve the communication with the partners
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Adaptive algorithm based on offline model

Backbone in combinatorial problems :
”good” solutions have some specific variables value

Design of mutation operator

Hypothesis : modify in priority important variables

Goal : automatic learning of expert knowledge

Method

Divide the set of variables into 3 groups according to
importance

Use reinforcement machine learning technique to select the
group to mutate.
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Adaptive bandit descent

Multi-armed bandit problem (reinforcement learning)

UCB strategy to select to relevant arm :

r̂i + C
√

S
si

r̂i : reward, si : nb. of selection of arm i , and S :

total nb. of selection, C : tradeoff parameter

Adaptive algorithm

G ← split var. into groups
x ← initialize random solution
repeat

g ← select group in G using UCB rule
x

′
← mutate a variable from g of x

x ← x
′
if f (x ′) < f (x)

Update rewards
until stopping criterion met
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Some results

Quality vs. number of evaluations :
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Speed up the convergence

Better than ”hand made” groups,
or previous Evolutionary Algorithm

Robust on different scenario (also for Quito city)
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Optimisation with time expensive simulation
Parallel computation : distribute computation on machines

Surrogate model : online substitution of the original function
with an (approximated) function fast to compute

Surrogate model

A lot of works on numerical optimization :
f : IRd → IR

Few works on discrete/combinatorial optimization :
f : {0, 1}d → IR, or f : Sn → IR

Bus stop position problem

Space : {0, 1}d open or
close possible stops

Criterium : min. travel
time
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Surrogate-assisted opt. of pseudo-boolean problems
Florain Leprêtre, Virginie Marion, Cyril Fonlupt (LISIC),
K. Tanaka, H. Aguirre (Univ. Shinshu), A. Liefooghe, B. Derbel (univ. Lille)

Surrogate-Assisted Optimization

X ← initial sample
repeat

M ← Build model of f from X
x? ← Optimize w.r.t. an acquisition function based on M
y? ← f (x?) using the numerical simulation
X ← X ∪ {(x?, y?)}

until time limit

In numerical optimization [18] :

Models :
Gaussian Process, polynomial chaos, NN, RBF, RF, deep∗, etc.

Acquisition function :
M, Expected improvement, probability impr., UCB, etc.

In discrete optimization [2] :

Use discrete distance, or numerical variable
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Example : Efficient Global Optimizer [9] [20]

Model : Gaussian Process M(x) ≈ N (m(x),K (x , x
′
))

Acquisition function : Expected Improvement

GP : Random variables which have joint Gaussian distribution.

mean : m(y(x)) = µ ; covariance : cov(y(x), y(x ′)) = exp(−θ dist(x , x ′)p)

from : Rasmussen, Williams, GP for ML, MIT Press, 2006.

pros : estimation of incertainty (expected improvement etc.)
cons : estimation is costly, and distance in high distance is not informative



Introduction Offline models Online models Nuclear energy system

Polynomial regression model
Polynomial chaos regression (PRC)

Model

A basis of functions {ϕj : j ∈ {1, . . . , p}}

M(x) =

p∑
j=1

βjϕj(x)

Regression using least square method, or bayesian approach

Example : second-order polynomial

M2(x) = β0 +
d∑

i=1

βi xi +
d−1∑
i=1

d∑
j=i+1

βij xixj

Pros :
Easy interpretation (XAI), fast to compute, polynomial regression

Cons :
Use a relevant basis of functions (Fourier transform, etc.)

Number of terms increases exponentially with order (sparse methods)
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Pseudo-boolean surrogate : Walsh functions

• Space pseudo-boolean function is a vector space
• Basis : multi-linear functions, xk1 . . . xk` [Baptista, Poloczek, BOCS, ICML 2018][1]

Multi-linear :
d = 1, ψ1(x) = x

0 1

1

-1

Orthogonal : No

x ψ0 ψ1

0 1 0
1 1 1

Walsh :
d = 1, ϕ1(x) = (−1)x

0 1

1

-1

Orthogonal : Yes

x ϕ0 ϕ1

0 1 1
1 1 -1

Extension to dimension d using tensorial product :
ψk1...k`(x) = xk1 . . . xk` ϕk1...k`(x) = (−1)xk1 . . . (−1)xk`
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Surrogate model for pseudo-boolean functions

Walsh functions

∀x ∈ {0, 1}d , ϕk(x) = (−1)
∑d−1

j=0 kjxj

Normal, and orthogonal basis

Any function can be written as :

f (x) =
2d−1∑
k=0

βk .ϕk(x)

with : βk = 1
2d

∑
x∈{0,1}d f (x).ϕk(x)

Example with order 2, model limited to quadratic interactions :

f (x) = β0 +
d∑

i=1

βi .σi +
d∑

i<j=1

βij .σiσj with σi = (−1)xi
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Why Walsh functions ?

f (x) = β0 +
d∑

i=1

βi .σi +
∑
i<j

βij .σiσj with σi = (−1)xi

Explicit algebraic model (not black-box) : easy to interpret
Interaction between variables, intensity of interaction |wi ,j |

Efficient algorithms to optimize such problems

Model of function used in quantum computing
Also know as Spin-Glasses, or QUBO / UBQP problems [8]
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Surrogate model based on Walsh fonctions

Expansion to order ` (cf. polynomial chaos, sparse grid, etc.)

M(x) =
∑

k : ord(ϕk )6`

β̂k .ϕk(x)

Pros :
See previous slides

Cons :
model dimension (quadratic, cubic, etc.)
No uncertainty estimation

Estimation of coefficients :
linear regression using sparse techniques : LARS/LASSO, etc.
LASSO : β̂ = argmin((M(xi )− yi )

2 + α||w ||1 )
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Walsh Surrogate-assisted Optimizer (WSaO)

Surrogate-Assisted Optimization

X ← initial sample
repeat

M ← Build Walsh model of f from X
x? ← Optimize M using Eff. Hill-Climber
y? ← f (x?) using the numerical simulation
X ← X ∪ {(x?, y?)}

until time limit

Efficient optimization algorithm for Walsh functions

using the additive property :
δi (x) = M(x

⊕
i)−M(x) = −2

∑
k⊃i βkϕk(x)

δij(x) = δi (x
⊕

j)− δi (x) = 4
∑

k⊃i&k⊃j βkϕk(x)

Find best improving move in O(`) at each step of the search.
Partition crossover to combine 2 solutions
Chicano, Whitley, Ochoa, and Tinós. ”Optimizing one million variable NK landscapes by hybridizing deterministic
recombination and local search.” In Genetic and Evolutionary Computation Conference, 2017. [3]
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Quality of Walsh regression on academic benchmarks

Mean abs. error on NK-landscapes benchmark

d = 10 d = 25 d = 100
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Walsh Surrogate-assisted Optimizer (WSaO)

Performance on UBQP benchmark

d = 10 d = 25 d = 100

Krigging : information of distance decreases with dimension

BOCS : bayesian estimation of multilinear basis, SA opt. alg.
(very expensive to compute)
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Preliminary results on bus stop problem

Mean abs. error on instances with d = 20, 4 activity centers

1 home 4 home uniform
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WSaO on bus stop problem

Preliminary results for small dimension d = 20 problem

The work is progressing on real data :
Valentin Vendi, PhD student, 2021-2024, ”Design of decision-making
tools for sustainable mobility in the Hauts-De-France region”,
co-direction with C. Fonlupt.

Others master student positions, and possible PhD position coming soon,

please contact me.
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Comments with surrogate models

Result with surrogate assisted optimization :
Near optimal solution, and an explicit model of your problem
Use non black-box machine learning model are useful !

Open issues :
Tradeoff between quality of the model (uncertainty),
and optimization effort

Perspectives :
multi-objective optimization, uncertainty,
permutation space, numerical & discret, large scale, etc.
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Context

Joined work

Jean-Michel Do, Jean-Charles Le Pallec, Cheikh Diop, CEA Saclay,
PhD : Mathieu Muniglia (2014 - 2017), Valentin Drouet (2017 - 2020),
Baptiste Gasse (2020 - 2023)

Multi-objective optimization of nuclear power plant control for load

following in the context of energy transition using evolutionary algorithms
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Context

PAGE 4 / 18  

Introduction

Large scale deployment of intermittent 

renewable energies in France

2

6

10

14

18

% of intermittent energy
in the total production

4th May 2015                          5th May 2015

(Source : RTE eco2mix)

82%

6%
8%4%

50%

30%

17%
3%

2015 2030

(Source : ADEME)

Nuclear Energy Intermittent Renewable Energies (Photovoltaics, Wind farms)

Other Renewable Energies (Hydroelectric) Fossil Energies (Coal, Gaz, Oil)

Highly fluctuating production rate (up 

to 3 times the average)

Increase of the power variations as well in frequency as in amplitude

Possible solutions of intermittency :

Flexibility (on demand)

Smart grid

Storage

Manageability of Pressurized Water Reactors
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Scenario of energetic transition in France

RTE (french electricity transport compagny) prediction for a
typical week in 2035 (VOLT scenario)
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Scenario of energetic transition in France

RTE (french electricity transport compagny) prediction for a
typical week in 2035 (VOLT scenario)
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Target production transient

24h of production : most penalizing possible transient
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Multi-physic simulator

Around 10 minutes for the simulation of one transient
(Now in 2022, 4 reactors, and potentially 40 min of simulation...)
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Optimization problem

Possible criteria

More than 7 criteria can be
used :

related to cost, safety, and
stability

Available control parameters

Power Shimming Rods :
Overlap (x3)
Speed control (x4)

Temperature Regulation
Rods :

maneuvering band (x1)

Search space size ≈ 1012
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Fitness landscape analysis : offline model
Using random walk sampling

Objective correlation

2 groups are highly correlated

Variable importance

Reduce the dimension to 6, and better understanding of the system
Allow to tune the mutation parameters
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Multiobjective optimization

Objective space

f

f1

2

Pareto front

Goal

No a priori on the order/importance of the objectives,
Decision a posteriori based on the optimal Pareto solutions.
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MOEA/D : Multi-Obj. Evo. Algo. based on Decomposition

A lot of MO algo. :
Pareto based (NSGAII,...), indicator based (IBEA,...), and

f

f1

2 λ

z*

λ
λ

λ

λ

λ

λ

z1 z

z

z
z

z

z

2

i-1

i

i+1

1 2

i

i+1

i-1

μ

μ-1μ-1

μ

Population at iteration t

One solution xi for each sub pb. i
of direction λi

Scalar function g :
Weighted Tchebycheff

Representation of solutions in
objective space : zi = g(xi |λi , z

?
i )

Same reference point for all
sub-pb. z? = z?1 = . . . = z?µ

Neighborhood size ]B(i) = T = 3
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MOEA/D : Multi-Obj. Evo. Algo. based on Decomposition

A lot of MO algo. :
Pareto based (NSGAII,...), indicator based (IBEA,...), and

f

f1

2 λ

z*

λ
λ
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λ

λ

λ

z1 z
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z
z

z

z
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i-1

i

i+1

B(i)

1 2

i

i+1

i-1

μ

μ-1μ-1

μ

From the neigh. B(i) of sub-pb. i ,
xi+1 is selected

One solution xi for each sub pb. i
of direction λi

Scalar function g :
Weighted Tchebycheff

Representation of solutions in
objective space : zi = g(xi |λi , z

?
i )

Same reference point for all
sub-pb. z? = z?1 = . . . = z?µ

Neighborhood size ]B(i) = T = 3
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MOEA/D : Multi-Obj. Evo. Algo. based on Decomposition

A lot of MO algo. :
Pareto based (NSGAII,...), indicator based (IBEA,...), and

f

f1

2 λ

z*

λ
λ
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The mutated solution y is created

One solution xi for each sub pb. i
of direction λi

Scalar function g :
Weighted Tchebycheff

Representation of solutions in
objective space : zi = g(xi |λi , z

?
i )

Same reference point for all
sub-pb. z? = z?1 = . . . = z?µ

Neighborhood size ]B(i) = T = 3
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MOEA/D : Multi-Obj. Evo. Algo. based on Decomposition

A lot of MO algo. :
Pareto based (NSGAII,...), indicator based (IBEA,...), and

f

f1

2 λ

z*
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z z
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i i+1
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μ

According to scalar fonction,
y is worst than xi−1,

y is better than xi and replaces it.

One solution xi for each sub pb. i
of direction λi

Scalar function g :
Weighted Tchebycheff

Representation of solutions in
objective space : zi = g(xi |λi , z

?
i )

Same reference point for all
sub-pb. z? = z?1 = . . . = z?µ

Neighborhood size ]B(i) = T = 3
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MOEA/D : Multi-Obj. Evo. Algo. based on Decomposition

A lot of MO algo. :
Pareto based (NSGAII,...), indicator based (IBEA,...), and

f

f1

2 λ

z*

λ
λ

λ

λ

λ

λ

z1 z

z

z
z

z

z

2

i-1

i

i+1

1 2

i

i+1

i-1
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μ-1μ-1

μ

According to scalar fonction,
y is also better than xi+1

and replaces it for the next iteration.

One solution xi for each sub pb. i
of direction λi

Scalar function g :
Weighted Tchebycheff

Representation of solutions in
objective space : zi = g(xi |λi , z

?
i )

Same reference point for all
sub-pb. z? = z?1 = . . . = z?µ

Neighborhood size ]B(i) = T = 3
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Massively parallel algorithm

Optimization of problems based on expensive simulation

Relevant tuning of parameters of the algorithm

Surrogate model

Parallel computing

Here,
Simulation for one burnup : 10 min
Simulation of 4 burnups (life cycle) : 40min

Massive parallel system (HPC)

Algorithms for the TGCC (GENCI Projet)
2 500 000 hours of available computation
1008 cores for 24h of computation.
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Asynchronous MOEA/D
Master-slaves architecture

Master

Slave

Slave

Slave i

Slave

3- Send x'i

1-Receive f'i

2- update xi, and B(i)
   x'i = mutation(xi)

Algorithm on Master

{x1, . . . , xλ} ← Initialization()
for i = 1..λ do

Send (Non-blocking) xi to slave Si

end for
repeat

if there is a pending mess. from Si then
Receive fitness f ′i of x ′i from Si

Update xi , and xj ∈ B(i) with (x ′i , f
′
i )

x ′i ← mutation(xi )
Send (Non-blocking) x ′i to slave Si

end if
until time limit

V. Drouet, S. Verel, and J-M. Do. ”Surrogate-assisted asynchronous

multiobjective algorithm for nuclear power plant operations.”, Gecco 2020. [4]
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Results at different burnups

At the beginning of exploitation At the end of exploitation

Optimization on the whole cycle is necessary
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Asynchronous MOEA/D with surrogate model

Algorithm on Master

{x1, . . . , xλ} ← Initialization()
for i = 1..λ do

Send (Non-blocking) xi to slave Si

end for
repeat

if there is a pending mess. from Si then
Receive fitness f ′i of x ′i from Si

Add (x ′i , f
′
i ) to sample S

Update xi , and xj ∈ B(i) with (x ′i , f
′
i )

Train model M with Sample S
if |S | < Nstart then

x ′i ← mutation(xi )
else

Select x ′i using model M
end if
Send (Non-blocking) x ′i to slave Si

end if
until time limit

Surrogate model

Random forest

Offline tuning using data

Acceleration of
convergence :
Double the prob. of
improv.

Surrogate model can be
misleading
(poor accuracy at the
begin.) :

Init. Random 
mutation

Surrogate assisted
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Results on whole exploitation cycle

Reduce Volume of effluent, and Instability (axial offset)
from current setting
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Analysis of decision variables

A posterio interpretation of the candidate solutions on Pareto front
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Conclusion

Optimization, machine learning techniques
to solve design problems with digital twins

Main tools :
Analysis fitness landscape to understand pb., and tune algo.
Use surrogate models, to accelerate the search, and bring

an algebraic model
Parallel, and distributed computation

A good algorithm is a tradeoff between :
Final decision making
Search space dimension, and its properties
Computation time, and power.

Digital twins, and AI offers a lot of perspectives
How to combine different methods ?
How to better understand systems ? ...
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