
Parallel Multiobjective Optimization
Algorithms

Sébastien Verel

LISIC
Université du Littoral Côte d’Opale

Equipe OSMOSE

verel@univ-littoral.fr

http://www.lisic.univ-littoral.fr/~verel

Master informatique WeDSci, ULCO,

2023, version 0.1

1/7

verel@univ-littoral.fr
http://www.lisic.univ-littoral.fr/~verel

Expensive optimization

When the computation of objective values are expensive,
3 main strategies can be used:

Clever algorithm to speed up the convergence using relevant
variables (sub-search space)

Parallelism : increase and benefit of parallel system

Surrogate model : learn to computation efficient model of
objectives

2/7

Parallel algortihms

”full” distributed algorithms

Cons:

Sharing information

Pros:
Balance of the work load (but algo design...)
Robust to failure

Maste/slaves algorithms

Cons:
Heterogeneous on computation time on Slaves
Overflow the master (time and data)

Pros:
Centralized information
Easy to implement

Suppose that a job on slave is about

3/7

Parallel algortihms

”full” distributed algorithms

Cons:
Sharing information

Pros:

Balance of the work load (but algo design...)
Robust to failure

Maste/slaves algorithms

Cons:
Heterogeneous on computation time on Slaves
Overflow the master (time and data)

Pros:
Centralized information
Easy to implement

Suppose that a job on slave is about

3/7

Parallel algortihms

”full” distributed algorithms

Cons:
Sharing information

Pros:
Balance of the work load (but algo design...)
Robust to failure

Maste/slaves algorithms

Cons:

Heterogeneous on computation time on Slaves
Overflow the master (time and data)

Pros:
Centralized information
Easy to implement

Suppose that a job on slave is about

3/7

Parallel algortihms

”full” distributed algorithms

Cons:
Sharing information

Pros:
Balance of the work load (but algo design...)
Robust to failure

Maste/slaves algorithms

Cons:
Heterogeneous on computation time on Slaves
Overflow the master (time and data)

Pros:

Centralized information
Easy to implement

Suppose that a job on slave is about

3/7

Parallel algortihms

”full” distributed algorithms

Cons:
Sharing information

Pros:
Balance of the work load (but algo design...)
Robust to failure

Maste/slaves algorithms

Cons:
Heterogeneous on computation time on Slaves
Overflow the master (time and data)

Pros:
Centralized information
Easy to implement

Suppose that a job on slave is about
3/7

Asynchronous Master-Workers MOEA/D

Drouet, V., S. Verel, and J-M. Do.
”Surrogate-assisted asynchronous multiobjective algorithm for
nuclear power plant operations.”
In Proceedings of the 2020 Genetic and Evolutionary Computation

Conference, pp. 1073-1081. 2020.

4/7

Asynchronous distributed (1 + λ)-Evolution Strategy
Master-slaves architecture

Master

Slave

Slave

Slave i

Slave

3- Send xi

1-Receive fi

2- update xbest
 xi = mutation(xbest)

Algorithm on Master

{x1, . . . , xλ} ← Initialization()
for i = 1..λ do

Send (Non-blocking) xi to slave Si

end for
xbest ← ∅, and fbest ←∞
repeat

if there is a pending mess. from Si then
Receive fitness fi of xi from Si

if fi 6 fbest then
xbest ← xi , and fbest ← fi

end if
xi ← mutation(xbest)
Send (Non-blocking) xi to slave Si

end if
until time limit

5/7

Quick analysis of parallel algortihms

The execution time of a job on slave is a random variable T with
average µ, and standard deviation σ.
n slaves are available.

When the jobs are supposed independent (asynchronous), what is
the average time between 2 jobs on master?

Application with µ = 10min, σ ≈ µ/2, and n = 1000.

Conclusion?

6/7

Asynchronous Master-Workers MOEA/D

7/7

