Context Benchmark design Fitness landscape analysis Conclusions
000000 0000000 0000000 oo

PUBO;: a tunable benchmark

with variable importance

SARA TARI, SEBASTIEN VEREL, and MAHMOUD OMIDVAR

Laboratoire d'Informatique, Signal et Image de la Céte d’opale (LISIC)
Université du Littoral Céte d'Opale, Calais, France
http://www-1lisic.univ-1littoral.fr/~verel/

EvoCOP conference,
April, 20, 2022

[vLisic

ni
Littoral Core d'Opale ique
e Cote dpote



http://www-lisic.univ-littoral.fr/~verel/

Context
©00000

Motivation

How to design efficient optimization algorithm
according to the properties of the instance?

Benchmark oriented design :
o Create set of diverse instances with relevant properties
@ Train, and test algorithms (components, and parameters) :
Machine/Human Learning approach

@ Improve the understanding of optimization algorithms :
Using fitness landscape analysis, or other techniques
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Another benchmark ?
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Another benchmark ?

Yes !
Benchmarking is an open ending research field :
we corroborate (or not) research hypothesis using benchmark

PUBO; benchmark :
Polynomial Unconstrained Binary Optimization
with variable importance

@ Based on Walsh functions,
orthogonal basis of pseudo-boolean functions
e With variable importance,
non "isotropic”, real-like property, local search operator

@ A bridge to a larger research community,
Quantum Computing
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Variable importance

Intuitively, in real-world problem, some variables are more
impactful on the objective value than others.

Example : Traffic light problem (Lepretre et al. 2019 [5])

Importance degree of variable i : §; = |f(mutate;(x)) — f(x)|
Estimation based on random walk on fitness landscape
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Huge effort in combinatorial benchmarking

o Classic benchmarks :
flow shop, job shop and scheduling problems (Taillard [7])
QAPLIb : artificial, and real-world (few), and real-like
Dimacs instances [], nk-landscapes, etc.

e Black-Box Optimization Benchmarking (BBOB) [4]

COCO plateform : single, multiobjective, mixed integer problems
e |OHprofiler [1]

23 real-valued (continuous),

25 academic pseudo-boolean problems

Each benchmark have is own relevance :
Compare algorithms on typical problems, compare difficulty of
instances, real-world problems, etc.
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Benchmark for quantum computers

Quantum computers

Available architectures, and/or algorithms allow to solve Quadratic
Unconstrained Binary Optimization problems (QUBO/UBQP) :

ZJS, + Z Jijsisj with s € {-1,1}"

ij=1

See other evoCOP talks
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Chook generator
Tile Planting instances (Perrera et al. 2020, PRE 2018 [6, 3])

QUBO with tunable degree of difficulty, and know global optimum
Hs) =D Hi(s)
(=1

Variables of Hy : a Tile; Hy € C; according to prob. p;

13

1 2 1
C; : quadratic, i frustrated states (loc. opt.), and 1111 as optimum

Proportion p1 vs. p; tunes the difficulty, but :
Nearly isotropic, limited interdependence between subproblems
Polynomial time algorithm can solve instances [2]
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Walsh functions, QUBO/UBQP, PUBO

e Space pseudo-boolean function is a vector space, {f: {0,1}" — R}
e Basis : multi-linear functions, Xy - - - Xk, [Baptista, Poloczek, BOCS, ICML 2018]

Multi-linear : Walsh :
n=1,1(x) = x n=1, ¢1(x) = (-1)*
S S
P —
0 1 0 1
1 1 —_
Orthonormal : No Orthonormal : Yes
x| Yo Y1 X | oo 1
0] 1 0 0|1 1
1 1 1 1 1 -1

Extension to dimension n using tensorial product :
Vi (X) = Xy -+ X P (X) = (=1)% . (1)
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Variable interaction in Walsh functions

Walsh functions
ok(s) = Hi:k,-:l Si with s; = (—1)%
order : number of 1 in the binary representation of k (degree)

v

Example of order 2
W ) 1 Z w; s + Z s,sj

i<j

Explicit algebraic model (not black-box), easy to interpret

@ Interdependence between the variables (non-zero terms)
@ Intensity of interaction |w; |

o Neutrality levels (plateaus) : integer for wy
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PUBOQO; principle

As Tile Planting, sum of m sub-functions (sub-problems, clauses) :

m

Vx € {0,1}", f(x) =) fi(x)

i=1

the class of f; is selected at random, probabilities p; of class C;

Originality : selection of variables

| A

fi(s) = —sos1 — s152 — S253 + 5350 depends on 4 variables
How to select variable in each sub-function?

Notice that, derivative of f : V;fi(x) = >_.; V,fi(x)
i.e. x;j is impactful
when the variable x; is more frequent in sub-functions.
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Variable importance in PUBO;

Importance classes

k disjoint classes of importance ¢; C X = {x1,...,Xn}
such that Uxc, = X, and ¢; N ¢; = 0 V{i,j}.
n; : number of variables in class ¢;

Degree of importance

| A

di € R™ : degree of importance of class ¢;

Probability of selecting a variable x € ¢; in each sub-function :

pC,' —

k
2 =19
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Co-appearance of important variables

Independent co-appearance

If random selection is independent, only bias by degree of importance :
P(xi € ¢y, ..., X, € ¢i,) = P, - Pe,
then every sub-functions are similar, the problem is "isotropic”.

In r-w problems, important variables should not be randomly distributed

Co-appearance parametrisation
Suppose there is only 2 classes of importance : ¢, and ¢;

p,(a) : prob. of having i var. of class 1 in the same sub-function of arity a

v

Al’ity a=1, fk(Xil)

p(()l) = pil) =1. Thus, p(()l) = Pg,. and pgl) =1—pg.

A
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Co-appearance of important variables (2)
Arity a = 2, fi(x;,, x;,)

Prob. to select ¢y should remain the same, same marginal probability :

R
o g
By setting p(()2) = péopél) :
(2) _
2) - pq)pCO
EQ) = (1= pL)Pa
= (1=p)(1 = pe) + Py — Pey

Pe, = P, : independence degree of co-appearance of the same class

Arity a, fi(x;, X,

vi, o+ =p

By setting p{? = pcop(()a Dl = = (pL,)" Pe,. etc.

more than 2 classes, inclusion/exclusion principle : x; € ¢, or x; € ¢y, ...
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Instances set of PUBO; benchmark

n; | Num. of var. in each class of importance
d; Degree of importance of each class

« | Prob. of importance class co-appearance

Description Experimental values
n Problem dimension [1000, 5000]
m Number of sub-functions [0.01,0.2] x = aln=1)
C Portfolio of sub-functions Tile Plantlng
pi Probabilities of sub-function class [0,1]
k Number of class of variable importance 2

nop=0.25n, ny =n—ng
do € [1, 10], d=1
[L,1/(pe — 1)]

Design of experiments

Factorial design is poor (coverage, and size),
1000 instances using Latin Hypercube Sampling (LHS) design.
Reject samples which do not respect constraints (avoid scaling bias)

|

Sources

Code of generator, of design, and instances :
https://gitlab.com/verel/pubo-importance-benchmark
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Methodology

e We do not use algorithm performance (to avoid bias analysis),

@ Fitness landscape analysis

@ Contrast benchmark parameters, in particular related to
importance, with basic features of fitness landscape

e Using Generalized Additive Model (GAM) :

y=1f(x)+e=371 BBj(x) +e
where B; basis functions (splines for example)
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Fitness landscape (Wright 1920)

@ S : set of candidate solutions, search space

o f: S — IR : objective function
o N :S — 2°, neighborhood relation between solutions

. e Geometry of the fitness
= landscape :
‘ Features/metrics

are correlated to
algorithm performance

Objective

Search space ~ —— —

Neighborhood : 1-bit mutation
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Three main features of fitness landscapes

Features estimation based on random walk :
(X1, X2, -+, x¢) S:t. xe11 € N(xt)

Ruggedess

Local " non-regularity” Random mutation, plateaus
metric : metric :
autocorr. length neutral rate
EL(f (xe)=F) (F (xen) =T : = _
p(n) = [( (Xt)var();(f:;tf )=1)] #{ (xesxer1) f(><t)£_"£><t+1), te{l,0-1}}

v

Multimodality : Adaptive walk length ¢

(x1,%2, ..., x0) s.t. xe11 € N(xe), and f(xi1) < f(x)
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Autocorrelation

Problem dim. n Degree of importance
edf=8.39, signif. ™
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Neutrality

Problem dim. n Degree of importance
0.100- _egr: 2.56, signif. ™™ | 0.1001 edf=1.59, Slgn.IT: T
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Length of adaptive walk

Problem dim. n Degree of importance
edr=2.28, signit. 777
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Summary of results

Fitness landscape analysis

0000e00

Param. Autocor. | Neutrality | Adapt. length
n 8.39 (*¥**) | 2.56 (***) 2.28 (*¥*¥)
m 1 (***) | 6.78 (**¥*) 2.81 (***)
do 1 (***) | 1.59 (***) 1.08 (.)
@ 2.56 (**) | 2.68 (***) 3.33 (%)
p1 L) | 219 (%) 1(-)
P2 1(-) 1(-) 1(-)
P3 1(-) 1(-) 2.96 (-)
Pa (*) | 171 (***) 1(-)

@ Main parameters tune the difficulty

@ p; not very impactful

o Adaptive length less less correlated
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Important vs. non-important variables

Autocor., and neutrality can be computed individually on each variable :
features difference between important, and non-important variables.

v
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Important vs. non-important variables

Autocor., and neutrality can be computed individually on each variable :
features difference between important, and non-important variables.

v

Neutrality
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Summary of important vs. non-important

Param. Autocor. | Neutrality
n 4.13 (***) | 2.47 (¥**)
m 2.64 (¥*¥*) | 6.7 (***)
do 3.64 (***) | 1.93 (***)
@ 2.94 (*¥**) | 3.02 (***)
p1 2.02 (1) 2.21 (*)
p2 1(-) 1(-)
p3 2.67 (-) 1.9 (-)
Pa 1(*)| 178 (**)

@ Main parameters tune the difference

@ p; not very impactful
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Conclusions

@ Except for p; (portfolio) parameters, all of PUBO; parameters
significant impact on ruggedness, multimodality and neutrality
levels of landscapes.

@ Variable importance parameters could have the same impact
on landscape than classical parameters

@ Non isotropic landscapes where the features of landscapes are
different for the subspace of important variables.

Consequences

Difference between important and non-important variables :
@ Should be considered in the design of EA, and LS,

@ Local search operator, and neighborhood should be designed
according to the variable importance

@ Large set of instances to learn/test new ideas
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Perspectives

@ Compare real-world problems to PUBQO; instances,

@ Study other possible benchmark parameters :
number of importance classes, the portfolio, etc.

@ New analysis should be conducted :
Local Optima Network

Design new fitness landscape tools for anisotropy

Train, test, and understand new optimization algorithms :
quantum or classical

Extend the generator to other type of optimization problems :
continuous, etc.

v

Sources

Code of generator, of design, and instances :

https://gitlab.com/verel/pubo-importance-benchmark
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