Where the Really Hard
 Quadratic Assignment Problems Are: the QAP-SAT instances

Sébastien Verel, Sarah Thomson, and Omar Rifki

Laboratoire d'Informatique, Signal et Image de la Côte d'opale (LISIC) Université du Littoral Côte d'Opale, Calais, France Edinburgh Napier University, Scotland, United Kingdom http://www-lisic.univ-littoral.fr/~verel/

> EvoCOP conference, April, 5, 2024

Phase transition, and solvers: SAT problems

"Where the Really Hard Problems Are", Cheeseman et al., IJCAI-91 Mitchell, Selman \& Levesque, AAAI-92

Phase transition in decision problems :
Satisfiability drops quickly around a phase parameter transition Link to optimization difficulty

For rnd. SAT, ratio clause-to-variable. For 3-SAT, $\alpha=m / n \approx 4.3$

Phase transition : TSP problem

TSP phase transition, Gent \& Walsh, AI, 1996

Phase transition in optimization problems: $\operatorname{Pr}\left(\exists \sigma: f_{T S P}(\sigma) \leq \ell\right)$ Satisfiability drops quickly around a phase parameter transition Link to optimization difficulty
For random TSP, n cities in area $A, \gamma=\left(\frac{\ell}{\sqrt{n A}}-0.78\right) n^{1 / 1.5}$

Phase transition: TSP problem

TSP phase transition, Gent \& Walsh, AI, 1996

Phase transition in optimization problems: $\operatorname{Pr}\left(\exists \sigma: f_{T S P}(\sigma) \leq \ell\right)$ Satisfiability drops quickly around a phase parameter transition Link to optimization difficulty
For random TSP, n cities in area $A, \gamma=\left(\frac{\ell}{\sqrt{n A}}-0.78\right) n^{1 / 1.5}$

Objectives of this work

Quadratic Assignement Problem (QAP)

- Well-known problem in evolutionary computation
- Very challenging problem

Goals

- Show a phase transition in "pure" QAP

First phase transition to our best knowledge

- Benchmark of easy/difficult instances
- Propose a design principle to better understand difficulty in QAP

Definition: QAP [Koopmans, 1957]

Assignment problem (minimization), quadratic costs :

$$
\forall \sigma \in \mathcal{S}_{n}, Q_{A, B}(\sigma)=\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j} B_{\sigma_{i} \sigma_{j}}=\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j} B_{i j}^{\sigma}
$$

\mathcal{S}_{n} : Search space, symmetric group of dim. n (permutations)
A, and B matrices $n \times n$,
$A_{i j}$ "flow" (cost) between objects i, and j,
$B_{i j}$ "distance" (cost) between positions i, and j

Here, $A_{i j} \geq 0$, and $B_{i j} \geq 0$
B not necessary distance matrix, not necessary symmetric, but $B_{i i}=0$, and $A_{i j}=0$.

QAP benchmark instances

- Many applications in real-world [3]
- Many benchmark instances :
to understand difficulty, and design better algorithm

QAPLib [1]

Collection of real-world small size, artificial larger ones

- Taillard instances (Taia, and Taib)
- Taie and Dre instances : difficult for metaheuristics [5]
- Stützle et al. instances : flow dominance and sparsity [12]

Problems difficulty in QAP

Matrices features

Flow dominance [14] : imbalance in matrices ("variance" in matrix) Sparsity [11] : number of zero-entries as a proportion of the n^{2}

Fitness landscape features

Correlation length, fitness-distance correlation [9] Information metrics estimate with random walks [10] Autocorrelation and plateaus size \sim number of similar values [13] Local Optima Network [4]

Fourier features

B\&Bound which operates in the Fourier space [8] Elementary landscape decomposition [2] Fourier decomposition [6]

Problems difficulty in QAP

Matrices features

Flow dominance [14] : imbalance in matrices ("variance" in matrix) Sparsity [11] : number of zero-entries as a proportion of the n^{2}

Fitness landscape features

Correlation length, fitness-distance correlation [9] Information metrics estimate with random walks [10] Autocorrelation and plateaus size \sim number of similar values [13] Local Optima Network [4]

Fourier features

> B\&Bound which operates in the Fourier space [8] Elementary landscape decomposition [2] Fourier decomposition [6]

Surprisingly, features are tuned for each matrix independently

From SAT to QAP-SAT

Phase transition in rnd. SAT/MAX-SAT

$f(x)=\sum_{i=1}^{m} c_{i}\left(x_{i_{1}}, x_{i_{2}}, x_{i_{3}}\right)$: sum of clauses i.e. low dim. problems One clause is satisfied when $c\left(x_{i_{1}}, x_{i_{2}}, x_{i_{3}}\right)=1$, the upper bound When the num. of clauses increases, transition to unsatisfiability

Difficulties with QAP

- QAP space is not a vector space. Bi-linear property :

$$
\begin{aligned}
& Q_{A+A^{\prime}, B+B^{\prime}}=Q_{A, B}+Q_{A, B^{\prime}}+Q_{A^{\prime}, B}+Q_{A^{\prime}, B^{\prime}} \\
& \text { but, } \quad Q_{A+A^{\prime}, B}=Q_{A, B}+Q_{A^{\prime}, B}
\end{aligned}
$$

- Sub-spaces of \mathcal{S}_{n} :

Subspaces are not isomorphic to \mathcal{S}_{3}, given by $\left(i_{1}, i_{2}, i_{3}\right)$, but, depend on other values/objects $\{1, \ldots, n\}$

Design components: A-clauses and B-clauses

A-clause and B-clause of size $k>0$

A-clause : $\exists V_{A} \subset[n]$ of size k s. t. : $\forall i \in[n] A_{i i}=0$, $\forall(i, j) \in V_{A}^{2}, i \neq j, A_{i j}>0$, and $\forall(i, j) \notin V_{A}^{2}, A_{i j}=0$.
B-clause : $\exists V_{B} \subset[n]$ of size k s. t. : $\forall i \in[n] B_{i i}=0$, $\forall(i, j) \in V_{B}^{2}, i \neq j, B_{i j}=1$, and $\forall(i, j) \notin V_{B}^{2}, B_{i j}=$ м.

$$
\begin{gathered}
V_{A}=\{2,3,5\} \\
A_{3}=\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 2 \\
0 & 2 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 3 & 1 & 0 & 0
\end{array}\right] \quad A^{(3)}=\left[\begin{array}{lll}
0 & 1 & 2 \\
2 & 0 & 1 \\
3 & 1 & 0
\end{array}\right] \\
V_{B}=\{1,2,5\}\left[\begin{array}{lllll}
0 & 1 & M & M & 1 \\
1 & 0 & M & M & 1 \\
M & M & 0 & M & M \\
M & M & M & 0 & M \\
1 & 1 & M & M & 0
\end{array}\right] \quad B^{(3)}=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]
\end{gathered}
$$

Design components: aggregation of clauses

A is composed of m A-clauses when :
$A=A_{1}+\ldots+A_{m}$ with A_{1}, \ldots, A_{m} A-clauses
nota : $Q_{A_{i}, B}$ is a clause
B is composed of $m_{1} B$-clauses when :
$B=B_{1} \odot \ldots \odot B_{m_{1}} \odot C$ with $B_{1}, \ldots, B_{m_{1}}$ B-clauses,
$C_{i j}>1, C_{i i}=0 . \odot$ minimum element by element

$$
A=\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 2 \\
0 & 2 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 3 & 1 & 0 & 0
\end{array}\right]+\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 2 \\
0 & 0 & 2 & 0 & 1 \\
0 & 0 & 3 & 1 & 0
\end{array}\right]=\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 2 \\
0 & 2 & 0 & 1 & 3 \\
0 & 0 & 2 & 0 & 1 \\
0 & 3 & 4 & 1 & 0
\end{array}\right]
$$

Design components: aggregation of clauses

A is composed of m A-clauses when :
$A=A_{1}+\ldots+A_{m}$ with A_{1}, \ldots, A_{m} A-clauses
nota : $Q_{A_{i}, B}$ is a clause
B is composed of m_{1} B-clauses when:
$B=B_{1} \odot \ldots \odot B_{m_{1}} \odot C$ with $B_{1}, \ldots, B_{m_{1}}$ B-clauses,
$C_{i j}>1, C_{i i}=0 . \odot$ minimum element by element

$$
B=\left[\begin{array}{lllll}
0 & 1 & M & M & 1 \\
1 & 0 & M & M & 1 \\
M & M & 0 & M & M \\
M & M & M & 0 & M \\
1 & 1 & M & M & 0
\end{array}\right] \odot\left[\begin{array}{lllll}
0 & 1 & 1 & M & M \\
1 & 0 & 1 & M & M \\
1 & 1 & 0 & M & M \\
M & M & M & 0 & M \\
M & M & M & M & 0
\end{array}\right] \odot C=\left[\begin{array}{lllll}
0 & 1 & 1 & 2 & 1 \\
1 & 0 & 1 & 2 & 1 \\
1 & 1 & 0 & 3 & 2 \\
3 & 2 & 2 & 0 & 5 \\
1 & 1 & 2 & 4 & 0
\end{array}\right]
$$

Design components : aggregation of clauses

A is composed of m A-clauses when :
$A=A_{1}+\ldots+A_{m}$ with A_{1}, \ldots, A_{m} A-clauses nota : $Q_{A_{i}, B}$ is a clause
B is composed of $m_{1} \mathrm{~B}$-clauses when :
$B=B_{1} \odot \ldots \odot B_{m_{1}} \odot C$ with $B_{1}, \ldots, B_{m_{1}}$ B-clauses, $C_{i j}>1, C_{i i}=0 . \odot$ minimum element by element

QAP-SAT

$Q_{A, B}$ is a QAP-SAT with m A-clauses and m_{1} B-clauses when :
A is composed of m A-clauses, and
B is composed of m_{1} B-clauses

Satisfiability

Lower bound of single clauses (A-clause, B-clause) :

$$
Q_{A^{(3)}, B^{(3)}}(\sigma)=\left[\begin{array}{lll}
0 & 1 & 2 \\
2 & 0 & 1 \\
3 & 1 & 0
\end{array}\right] \cdot\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]=10
$$

Satisfiability

Lower bound of single clauses (A-clause, B-clause) :

$$
\begin{aligned}
Q_{A_{3}, B_{3}}(\sigma=(13)) & =\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 2 \\
0 & 2 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 3 & 1 & 0 & 0
\end{array}\right] \cdot\left[\begin{array}{lllll}
0 & 1 & M & M & 1 \\
1 & 0 & M & M & 1 \\
M & M & 0 & M & M \\
M & M & M & 0 & M \\
1 & 1 & M & M & 0
\end{array}\right]^{\sigma} \\
& =\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 2 \\
0 & 2 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 3 & 1 & 0 & 0
\end{array}\right] \cdot\left[\begin{array}{lllll}
0 & M & M & M & M \\
M & 0 & 1 & M & 1 \\
M & 1 & 0 & M & 1 \\
M & M & M & 0 & M \\
M & 1 & 1 & M & 0
\end{array}\right]=10
\end{aligned}
$$

Indeed any σ s.t. $\sigma(\{2,3,5\})=\{1,2,5\}$, is an optimal solution

Satisfiability

Lower bound of single clauses (A-clause, B-clause) :

$$
\begin{aligned}
Q_{A_{3}, B_{3}}(\sigma=(13)) & =\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 2 \\
0 & 2 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 3 & 1 & 0 & 0
\end{array}\right] \cdot\left[\begin{array}{lllll}
0 & 1 & M & M & 1 \\
1 & 0 & M & M & 1 \\
M & M & 0 & M & M \\
M & M & M & 0 & M \\
1 & 1 & M & M & 0
\end{array}\right] \\
& =\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 2 \\
0 & 2 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 3 & 1 & 0 & 0
\end{array}\right] \cdot\left[\begin{array}{lllll}
0 & M & M & M & M \\
M & 0 & 1 & M & 1 \\
M & 1 & 0 & M & 1 \\
M & M & M & 0 & M \\
M & 1 & 1 & M & 0
\end{array}\right]=10
\end{aligned}
$$

Clause $Q_{A_{i}, B}$ satisfied when the lb is reached : $\exists \sigma Q_{A_{i}, B}(\sigma)=\operatorname{lb}\left(A_{i}\right)$
$Q_{A, B}$ satisfied when all clauses are satisfied : $\exists \sigma Q_{A, B}(\sigma)=m \mathrm{lb}\left(A_{i}\right)$

Example of satisfiability : $m=2$, and $m_{1}=2$

$$
\begin{gathered}
A=\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 2 \\
0 & 2 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 3 & 1 & 0 & 0
\end{array}\right]+\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 2 \\
0 & 0 & 2 & 0 & 1 \\
0 & 0 & 3 & 1 & 0
\end{array}\right]=\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 2 \\
0 & 2 & 0 & 1 & 3 \\
0 & 0 & 2 & 0 & 1 \\
0 & 3 & 4 & 1 & 0
\end{array}\right] \\
B=\left[\begin{array}{lllll}
0 & 1 & M & M & 1 \\
1 & 0 & M & M & 1 \\
M & M & 0 & M & M \\
M & M & M & 0 & M \\
1 & 1 & M & M & 0
\end{array}\right] \odot\left[\begin{array}{llllll}
0 & 1 & 1 & M & M \\
1 & 0 & 1 & M & M \\
1 & 1 & 0 & M & M \\
M & M & M & 0 & M \\
M & M & M & M & 0
\end{array}\right]=\left[\begin{array}{lllll}
0 & 1 & 1 & M & 1 \\
1 & 0 & 1 & M & 1 \\
1 & 1 & 0 & M & M \\
M & M & M & 0 & M \\
1 & 1 & M & M & 0
\end{array}\right] \\
B^{\sigma}=\left[\begin{array}{lllll}
0 & M & M & M & M \\
M & 0 & 1 & M & 1 \\
M & 1 & 0 & M & 1 \\
M & M & M & 0 & M \\
M & 1 & 1 & M & 0
\end{array}\right] \odot\left[\begin{array}{lllll}
0 & M & M & M & M \\
M & 0 & M & M & M \\
M & M & 0 & 1 & 1 \\
M & M & 1 & 0 & 1 \\
M & M & 1 & 1 & 0
\end{array}\right]=\left[\begin{array}{llllll}
0 & M & M & M & M \\
M & 0 & 1 & 1 & 1 \\
M & 1 & 0 & 1 & 1 \\
M & 1 & 1 & 0 & 1 \\
M & 1 & 1 & 1 & 0
\end{array}\right] \\
\sigma=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
4 & 5 & 2 & 3 & 1
\end{array}\right) Q_{A, B}(\sigma)=20, Q_{A, B} \text { is satisfiable }
\end{gathered}
$$

Random QAP-SAT instances

QAP-k-SAT

All clauses have the same size k
For each clause (A-clauses, and B-clauses),
Select randomly and independently k different variables Use $A_{(3)}$, and $B_{(3)}$ to complete the clause indexed by the var.
Complete matrix B values $d>1$ s. t. proportions follow $p_{d}=p_{1}^{d}$
$V_{A}=\{2,3,5\}, V_{B}=\{1,2,5\}$

$$
A^{(3)}=\left[\begin{array}{lll}
0 & 1 & 2 \\
2 & 0 & 1 \\
3 & 1 & 0
\end{array}\right] \quad B^{(3)}=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]
$$

Python code (generator), instances, data :
https://gitlab.com/verel/qap-sat

Experimental setup

Instance generation

	Description	Values
n	Problem dimension	$\{8,9, \ldots, 17\} \quad\{18,19\}$
k	Size of clause	3
m_{1}	Num. of B-clauses	$\{3,6,9, \ldots, 27\}\{3,9,15, \ldots, 57\}$
m	Num. of A-clauses	$\{1,2,3, \ldots, 40\}\{1,3,9,15, \ldots, 57,63\}$

Branch \& Bound algorithm by Fujii et al. [7]

Lagrangian doubly non-negative relaxation and Newton-bracketing MATLAB code available.
Notice that : full enumeration is possible for $n \leq 13$

Tabu search

Baseline "classical" Robust Tabu Search of Taillard

Proportion of satisfiable instances

Proportion of satisfiable instances

- When m_{1} is fixed, fast drop "around" $m \approx m_{1}$
- Same shape for every problem dim. n
- Faster drop when n is larger

Phase transition parameter

- Critical parameter m_{c} of logistic model, estimated by logit regression (high R^{2} values >0.9)
- Regression of m_{1} when n is given : $m_{c}=\beta_{0}+\beta_{1} m_{1}+\epsilon$ R^{2} over 0.97 Slope β_{1} decreases with n

Phase transition parameter

$$
m_{c}=k n^{\alpha_{1}} m_{1}^{\alpha_{2}}+\epsilon
$$

Adding a scaling factor $n^{\alpha_{1}}$ (such as TSP)
Estimation using $\log \left(m_{c}\right), R^{2}=0.947\left(R^{2}=0.898\right.$ without $\left.\log \right)$ $\alpha_{1}=-0.75999$: negative $\in[-1 / \sqrt{n}$, and $-1 / n]$
$\alpha_{2}=0.90365$: close to $1 . \log (k)=1.65453$
Hypothesise on phase trans. param. : $m n^{-\alpha_{1}} m_{1}^{-\alpha_{2}}$

B \& B computation time

Sigmoid regression model : $t(m)=\frac{L}{1+e^{-r\left(m-m_{t}\right)}}$
$L \approx \gamma(2.043+0.476(n-8))$ max. value, r rate, and m_{t} inflexion Median value regressions of $R^{2}=0.969$

Tabu search success rate

Analysis using sigmoid regression model :
High regression quality again, follow the shape of m_{c}

Critical parameter m_{c} v.s. $\mathrm{B} \& \mathrm{~B}$, and Tabu critical param.

High linear correlation between m_{c}, and critical param. of algorithm Correlation for tabu search : seems not depend of problem dim. n

Conclusions

Summary

- Propose new QAP benchmark :

Difficulty related to the link between A, and B matrices

- Show phase transition across the instances
- Hypothesis of phase transition parameter model

Perspectives

- Large instances
- Compare QAP-SAT with QAPLib, decompose real-world instances into "clauses"
- Fitness landscape analysis, theoretical investigation QAP-2-SAT (graph matching), etc.
- Different k, clauses, relax the satisfiability condition, etc.
$A^{(3)}=\left[\begin{array}{lll}0 & 1 & 2 \\ 2 & 0 & 1 \\ 3 & 1 & 0\end{array}\right]=\left[\begin{array}{lll}0 & ? & ? \\ ? & 0 & ? \\ ? & ? & 0\end{array}\right] \quad B^{(3)}=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]=\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 0 & 1 \\ 2 & 1 & 0\end{array}\right]$

Rainer E Burkard，Stefan E Karisch，and Franz Rendl． Qaplib－a quadratic assignment problem library． Journal of Global optimization， 10 ：391－403， 1997.
嗇 Francisco Chicano，Gabriel Luque，and Enrique Alba． Elementary landscape decomposition of the quadratic assignment problem．
In Proceedings of the 12th annual conference on Genetic and evolutionary computation，pages 1425－1432， 2010.

目 Clayton W Commander．
A survey of the quadratic assignment problem，with applications．
2005.
（國 Fabio Daolio，Sébastien Verel，Gabriela Ochoa，and Marco Tomassini．
Local optima networks of the quadratic assignment problem． In IEEE Congress on Evolutionary Computation，pages 1－8． IEEE， 2010.

目 Zvi Drezner，Peter M Hahn，and Éeric D Taillard．
Recent advances for the quadratic assignment problem with special emphasis on instances that are difficult for meta－heuristic methods．
Annals of Operations research， 139 ：65－94， 2005.
雷 Anne Elorza，Leticia Hernando，and Jose A Lozano．
Characterizing permutation－based combinatorial optimization problems in fourier space．
Evolutionary Computation，pages 1－39， 2022.
䍰 Koichi Fujii，Naoki Ito，Sunyoung Kim，Masakazu Kojima，Yuji Shinano，and Kim－Chuan Toh．
Solving challenging large scale qaps．
arXiv preprint arXiv ：2101．09629， 2021.
围 Risi Kondor．
A fourier space algorithm for solving quadratic assignment problems．

In Proceedings of the twenty-first annual ACM-SIAM symposium on Discrete algorithms, pages 1017-1028. SIAM, 2010.

Peter Merz and Bernd Freisleben.
Fitness landscape analysis and memetic algorithms for the quadratic assignment problem.
IEEE transactions on evolutionary computation, 4(4):337-352, 2000.

Erik Pitzer, Andreas Beham, and Michael Affenzeller.
Automatic algorithm selection for the quadratic assignment problem using fitness landscape analysis.
In Evolutionary Computation in Combinatorial Optimization :
13th European Conference, EvoCOP 2013, Vienna, Austria, April 3-5, 2013. Proceedings 13, pages 109-120. Springer, 2013.

- Kate A Smith-Miles.

Towards insightful algorithm selection for optimisation using meta-learning concepts.
In 2008 IEEE international joint conference on neural networks (IEEE world congress on computational intelligence), pages 4118-4124. ieee, 2008.

R Thomas Stützle and Susana Fernandes.
New benchmark instances for the qap and the experimental analysis of algorithms.
In European Conference on Evolutionary Computation in
Combinatorial Optimization, pages 199-209. Springer, 2004.

- Mohammad-H Tayarani-N and Adam Prügel-Bennett.

Quadratic assignment problem : a landscape analysis.
Evolutionary Intelligence, 8 :165-184, 2015.
Thomas E Vollmann and Elwood S Buffa.
The facilities layout problem in perspective.
Management Science, 12(10) :B-450, 1966.

