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Phase transition, and solvers : SAT problems

”Where the Really Hard Problems Are”, Cheeseman et al., IJCAI-91

Mitchell, Selman & Levesque, AAAI-92

Phase transitions and local search for k -satisfiability

The satisfiability transition (1/2)

Mitchell et al. (1992): The “50% satisfiable” point or “satisfiability threshold”
for 3-SAT seems to be located at α≈ 4.25 for large n.

Univ. Oldenburg 15.7.2008

Phase transitions and local search for k -satisfiability

Hard instances for 3-SAT (2/3)

Results:

! A distinct peak in median running times at about clauses-to-variables
ratio α≈ 4.5.

! Peak gets more pronounced for increasing n⇒ well-defined “delta”
distribution for infinite n?

Univ. Oldenburg 15.7.2008

Phase transition in decision problems :
Satisfiability drops quickly around a phase parameter transition
Link to optimization difficulty

For rnd. SAT, ratio clause-to-variable. For 3-SAT, α = m/n ≈ 4.3
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Phase transition : TSP problem

TSP phase transition, Gent & Walsh, AI, 1996
1.P Gent, 7: Walsh/Art$cial Intelligence 88 (1996) 349-358 353 
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Fig. 1. (a) The probability of a tour existing plotted against tour length 1 for 6, 12, 18, 24, and 30 city 
random problems. 1000 instances were used at each problem size giving roughly 3% accuracy. (b) The same 
data plotted against the control parameter l/m. The curves become sharper as n increases. (c) The same 
data plotted against the resealed parameter y. Only the curve for II = 6 can be distinguished statistically from 
a normal distribution with parameters independent of n. The vertical line at y = 0.6 indicates where 50% of 
instances are soluble. 
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Every distinct pair of values nl and n2 thus provides an estimate for v. We computed 
all possible estimates from our data and took the median. This gives Y = 1.5 f 0.2 
where errors represent the upper and lower quartiles of the estimates made from pairs 
nl, n2. 

We therefore define a resealed parameter y = (r/a - 0.78) . TZ’/‘.~. In Fig. 1 (c), 
we plot the probability of a tour existing against y. Viewing our data for the distributions 
of optimal tour lengths lopt in terms of the resealed parameter y, we observe a mean 
of y = 0.58, median of 0.60 and a standard deviation of 0.50. We tested the hypothesis 
that the distribution of y is normally distributed with median 0.6 and standard deviation 
0.5, using a goodness of fit test with 50 intervals. Using data for n from 8 to 30 in steps 
of 1, we could not reject this hypothesis at the 5% significance level, but it could be 
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Fig. 2. Median number of nodes searched by the branch and bound algorithm in solving the decision problem, 
plotted against y for 6. 12, 18, 24, and 30 t ci y random problems. 1000 random instances were used at 
each point. The vertical line indicates where 50% of the instances are soluble. Other probabilities can be 
interpolated from Fig. I (c). 

rejected for II = 6 and n = 7. We have shown that using finite-size scaling we can model 
the entire distribution of tour lengths using a single normal distribution, from n = 8-30. 
While it does not follow that tour lengths are in fact normally distributed, providing a 
significantly better model will require much more experimentation with larger sample 
sizes, number of cities, or both. 

Whilst finite-size scaling fits our data extremely well, caution is required if we wish 
to extrapolate to larger n. The asymptotic value of the control parameter, at the phase 
transition reported in [ 131 is 0.7124 i 0.0002. This is significantly smaller than the 
value of a used here. If LY is set to 0.7124, a critical value like, for example, the 
mean or median tour length can be modelled using finite-size scaling. However, this 
resealing fails to describe accurately the complete tour length distribution. To obtain a 
good fit for the whole distribution, we must scale around not a fixed value but a critical 
and varying value (for example, the value of the control parameter at the median 
optimal tour length). A similar issue appears to occur in random Boolean satisfiability 
problems. In [ 151 the critical value used for finite-size scaling is 4.17. This gives a 
crossover point where 50% of problems with N variables and L clauses are satisfiable 
at L E 4.17N + 3. IN’/“. By contrast, the crossover point is empirically determined to 
be L = 4.258N + 58.68Np2j3 in [ 51. The differences between these two models remain 
to be resolved. 

4. Search cost 

As in other combinatorial problems, a peak in search cost is associated with the phase 
transition in solubility. With a very large bound on the required tour length, many tours 
satisfy the bound and it is typically easy to find one. With a very small bound, almost 
all tours are too long and many are quickly ruled out, so again problems are typically 
easy. Problems at the phase boundary are often hard, as it is difficult to determine if 
a tour of the required length exists without exhaustive search. Surprisingly, search cost 
appears to be directly correlated with the resealed parameter y. In Fig. 2, we plot the 

Phase transition in optimization problems : Pr(∃σ : fTSP(σ) ≤ `)
Satisfiability drops quickly around a phase parameter transition
Link to optimization difficulty

For random TSP, n cities in area A, γ = ( `√
nA
− 0.78)n1/1.5
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Fig. 1. (a) The probability of a tour existing plotted against tour length 1 for 6, 12, 18, 24, and 30 city 
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data plotted against the resealed parameter y. Only the curve for II = 6 can be distinguished statistically from 
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Every distinct pair of values nl and n2 thus provides an estimate for v. We computed 
all possible estimates from our data and took the median. This gives Y = 1.5 f 0.2 
where errors represent the upper and lower quartiles of the estimates made from pairs 
nl, n2. 

We therefore define a resealed parameter y = (r/a - 0.78) . TZ’/‘.~. In Fig. 1 (c), 
we plot the probability of a tour existing against y. Viewing our data for the distributions 
of optimal tour lengths lopt in terms of the resealed parameter y, we observe a mean 
of y = 0.58, median of 0.60 and a standard deviation of 0.50. We tested the hypothesis 
that the distribution of y is normally distributed with median 0.6 and standard deviation 
0.5, using a goodness of fit test with 50 intervals. Using data for n from 8 to 30 in steps 
of 1, we could not reject this hypothesis at the 5% significance level, but it could be 
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rejected for II = 6 and n = 7. We have shown that using finite-size scaling we can model 
the entire distribution of tour lengths using a single normal distribution, from n = 8-30. 
While it does not follow that tour lengths are in fact normally distributed, providing a 
significantly better model will require much more experimentation with larger sample 
sizes, number of cities, or both. 

Whilst finite-size scaling fits our data extremely well, caution is required if we wish 
to extrapolate to larger n. The asymptotic value of the control parameter, at the phase 
transition reported in [ 131 is 0.7124 i 0.0002. This is significantly smaller than the 
value of a used here. If LY is set to 0.7124, a critical value like, for example, the 
mean or median tour length can be modelled using finite-size scaling. However, this 
resealing fails to describe accurately the complete tour length distribution. To obtain a 
good fit for the whole distribution, we must scale around not a fixed value but a critical 
and varying value (for example, the value of the control parameter at the median 
optimal tour length). A similar issue appears to occur in random Boolean satisfiability 
problems. In [ 151 the critical value used for finite-size scaling is 4.17. This gives a 
crossover point where 50% of problems with N variables and L clauses are satisfiable 
at L E 4.17N + 3. IN’/“. By contrast, the crossover point is empirically determined to 
be L = 4.258N + 58.68Np2j3 in [ 51. The differences between these two models remain 
to be resolved. 
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As in other combinatorial problems, a peak in search cost is associated with the phase 
transition in solubility. With a very large bound on the required tour length, many tours 
satisfy the bound and it is typically easy to find one. With a very small bound, almost 
all tours are too long and many are quickly ruled out, so again problems are typically 
easy. Problems at the phase boundary are often hard, as it is difficult to determine if 
a tour of the required length exists without exhaustive search. Surprisingly, search cost 
appears to be directly correlated with the resealed parameter y. In Fig. 2, we plot the 
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Objectives of this work

Quadratic Assignement Problem (QAP)

• Well-known problem in evolutionary computation
• Very challenging problem

Goals

• Show a phase transition in ”pure” QAP
First phase transition to our best knowledge

• Benchmark of easy/difficult instances

• Propose a design principle to better understand difficulty in QAP



Context QAP, and problem difficulty QAP-SAT problems Experimental analysis Conclusions

Definition : QAP [Koopmans, 1957]

Assignment problem (minimization), quadratic costs :

∀σ ∈ Sn, QA,B(σ) =
n∑

i=1

n∑
j=1

AijBσiσj =
n∑

i=1

n∑
j=1

AijB
σ
ij

Sn : Search space, symmetric group of dim. n (permutations)
A, and B matrices n × n,
Aij ”flow” (cost) between objects i , and j ,
Bij ”distance” (cost) between positions i , and j

Here, Aij ≥ 0, and Bij ≥ 0
B not necessary distance matrix, not necessary symmetric,
but Bii = 0, and Aii = 0.
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QAP benchmark instances

Many applications in real-world [3]

Many benchmark instances :
to understand difficulty, and design better algorithm

QAPLib [1]

Collection of real-world small size, artificial larger ones

Taillard instances (Taia, and Taib)

Taie and Dre instances : difficult for metaheuristics [5]

Stützle et al. instances : flow dominance and sparsity [12]



Context QAP, and problem difficulty QAP-SAT problems Experimental analysis Conclusions

Problems difficulty in QAP

Matrices features

Flow dominance [14] : imbalance in matrices (”variance” in matrix)
Sparsity [11] : number of zero-entries as a proportion of the n2

Fitness landscape features

Correlation length, fitness-distance correlation [9]
Information metrics estimate with random walks [10]
Autocorrelation and plateaus size ∼ number of similar values [13]
Local Optima Network [4]

Fourier features

B&Bound which operates in the Fourier space [8]
Elementary landscape decomposition [2] Fourier decomposition [6]

Surprisingly, features are tuned for each matrix independently
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From SAT to QAP-SAT

Phase transition in rnd. SAT/MAX-SAT

f (x) =
∑m

i=1 ci (xi1 , xi2 , xi3) : sum of clauses i.e. low dim. problems

One clause is satisfied when c(xi1 , xi2 , xi3) = 1, the upper bound
When the num. of clauses increases, transition to unsatisfiability

Difficulties with QAP

• QAP space is not a vector space. Bi-linear property :

QA+A′,B+B′ = QA,B + QA,B′ + QA′,B + QA′,B′

but, QA+A′,B = QA,B + QA′,B

• Sub-spaces of Sn :
Subspaces are not isomorphic to S3, given by (i1, i2, i3),
but, depend on other values/objects {1, . . . , n}



Context QAP, and problem difficulty QAP-SAT problems Experimental analysis Conclusions

Design components : a-clauses and b-clauses

a-clause and b-clause of size k > 0

A-clause : ∃VA ⊂ [n] of size k s. t. : ∀i ∈ [n] Aii = 0,
∀(i , j) ∈ V 2

A, i 6= j , Aij > 0, and ∀(i , j) 6∈ V 2
A, Aij = 0.

B-clause : ∃VB ⊂ [n] of size k s. t. : ∀i ∈ [n] Bii = 0,
∀(i , j) ∈ V 2

B , i 6= j , Bij = 1, and ∀(i , j) 6∈ V 2
B , Bij = m.

VA = {2, 3, 5}

A3 =


0 0 0 0 0
0 0 1 0 2
0 2 0 0 1
0 0 0 0 0
0 3 1 0 0

 A(3) =

0 1 2
2 0 1
3 1 0


VB = {1, 2, 5}

B3 =


0 1 m m 1
1 0 m m 1
m m 0 m m

m m m 0 m

1 1 m m 0

 B(3) =

0 1 1
1 0 1
1 1 0


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Design components : aggregation of clauses

A is composed of m a-clauses when :
A = A1 + . . .+ Am with A1, . . . ,Am a-clauses

nota : QAi ,B is a clause

B is composed of m1 b-clauses when :
B = B1 � . . .� Bm1 � C with B1, . . . ,Bm1 b-clauses,
Cij > 1, Cii = 0. � minimum element by element

A =


0 0 0 0 0
0 0 1 0 2
0 2 0 0 1
0 0 0 0 0
0 3 1 0 0

+


0 0 0 0 0
0 0 0 0 0
0 0 0 1 2
0 0 2 0 1
0 0 3 1 0

 =


0 0 0 0 0
0 0 1 0 2
0 2 0 1 3
0 0 2 0 1
0 3 4 1 0


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Design components : aggregation of clauses

A is composed of m a-clauses when :
A = A1 + . . .+ Am with A1, . . . ,Am a-clauses

nota : QAi ,B is a clause

B is composed of m1 b-clauses when :
B = B1 � . . .� Bm1 � C with B1, . . . ,Bm1 b-clauses,
Cij > 1, Cii = 0. � minimum element by element

B =


0 1 m m 1
1 0 m m 1
m m 0 m m

m m m 0 m

1 1 m m 0

�


0 1 1 m m

1 0 1 m m

1 1 0 m m

m m m 0 m

m m m m 0

�C =


0 1 1 2 1
1 0 1 2 1
1 1 0 3 2
3 2 2 0 5
1 1 2 4 0


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Design components : aggregation of clauses

A is composed of m a-clauses when :
A = A1 + . . .+ Am with A1, . . . ,Am a-clauses

nota : QAi ,B is a clause

B is composed of m1 b-clauses when :
B = B1 � . . .� Bm1 � C with B1, . . . ,Bm1 b-clauses,
Cij > 1, Cii = 0. � minimum element by element

QAP-SAT

QA,B is a QAP-SAT with m a-clauses and m1 b-clauses when :
A is composed of m a-clauses, and
B is composed of m1 b-clauses
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Satisfiability

Lower bound of single clauses (a-clause, b-clause) :

QA(3),B(3)(σ) =

0 1 2
2 0 1
3 1 0

 .
0 1 1

1 0 1
1 1 0

 = 10
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Satisfiability

Lower bound of single clauses (a-clause, b-clause) :

QA3,B3(σ = (13)) =


0 0 0 0 0
0 0 1 0 2
0 2 0 0 1
0 0 0 0 0
0 3 1 0 0

 .


0 1 m m 1
1 0 m m 1
m m 0 m m

m m m 0 m

1 1 m m 0


σ

=


0 0 0 0 0
0 0 1 0 2
0 2 0 0 1
0 0 0 0 0
0 3 1 0 0

 .


0 m m m m

m 0 1 m 1
m 1 0 m 1
m m m 0 m

m 1 1 m 0

 = 10

Indeed any σ s.t. σ({2, 3, 5}) = {1, 2, 5}, is an optimal solution
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Satisfiability

Lower bound of single clauses (a-clause, b-clause) :

QA3,B3(σ = (13)) =


0 0 0 0 0
0 0 1 0 2
0 2 0 0 1
0 0 0 0 0
0 3 1 0 0

 .


0 1 m m 1
1 0 m m 1
m m 0 m m

m m m 0 m

1 1 m m 0


σ

=


0 0 0 0 0
0 0 1 0 2
0 2 0 0 1
0 0 0 0 0
0 3 1 0 0

 .


0 m m m m

m 0 1 m 1
m 1 0 m 1
m m m 0 m

m 1 1 m 0

 = 10

Clause QAi ,B satisfied when the lb is reached : ∃σ QAi ,B(σ) = lb(Ai )

QA,B satisfied when all clauses are satisfied : ∃σ QA,B(σ) = m lb(Ai )
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Example of satisfiability : m = 2, and m1 = 2

A =


0 0 0 0 0
0 0 1 0 2
0 2 0 0 1
0 0 0 0 0
0 3 1 0 0

+


0 0 0 0 0
0 0 0 0 0
0 0 0 1 2
0 0 2 0 1
0 0 3 1 0

 =


0 0 0 0 0
0 0 1 0 2
0 2 0 1 3
0 0 2 0 1
0 3 4 1 0



B =


0 1 m m 1
1 0 m m 1
m m 0 m m

m m m 0 m

1 1 m m 0

�


0 1 1 m m

1 0 1 m m

1 1 0 m m

m m m 0 m

m m m m 0

 =


0 1 1 m 1
1 0 1 m 1
1 1 0 m m

m m m 0 m

1 1 m m 0



Bσ =


0 m m m m

m 0 1 m 1
m 1 0 m 1
m m m 0 m

m 1 1 m 0

�


0 m m m m

m 0 m m m

m m 0 1 1
m m 1 0 1
m m 1 1 0

 =


0 m m m m

m 0 1 1 1
m 1 0 1 1
m 1 1 0 1
m 1 1 1 0


σ =

(
1 2 3 4 5
4 5 2 3 1

)
QA,B(σ) = 20, QA,B is satisfiable
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Random QAP-SAT instances

QAP-k-SAT

All clauses have the same size k

For each clause (a-clauses, and b-clauses),
Select randomly and independently k different variables
Use A(3), and B(3) to complete the clause indexed by the var.

Complete matrix B values d > 1 s. t. proportions follow pd = pd1

VA = {2, 3, 5}, VB = {1, 2, 5}

A(3) =

0 1 2
2 0 1
3 1 0

 B(3) =

0 1 1
1 0 1
1 1 0


Python code (generator), instances, data :

https://gitlab.com/verel/qap-sat

https://gitlab.com/verel/qap-sat
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Experimental setup

Instance generation

Description Values
n Problem dimension {8, 9, . . . , 17} {18, 19}
k Size of clause 3
m1 Num. of b-clauses {3, 6, 9, . . . , 27} {3, 9, 15, . . . , 57}
m Num. of a-clauses {1, 2, 3, . . . , 40} {1, 3, 9, 15, . . . , 57, 63}

50 instances for each parameter triplet (n,m1,m)

Branch & Bound algorithm by Fujii et al. [7]

Lagrangian doubly non-negative relaxation and Newton-bracketing
MATLAB code available.

Notice that : full enumeration is possible for n ≤ 13

Tabu search

Baseline ”classical” Robust Tabu Search of Taillard



Context QAP, and problem difficulty QAP-SAT problems Experimental analysis Conclusions

Proportion of satisfiable instances
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Proportion of satisfiable instances

n = 12
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• When m1 is fixed, fast drop ”around” m ≈ m1

• Same shape for every problem dim. n
• Faster drop when n is larger
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Phase transition parameter
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• Critical parameter mc of logistic model,
estimated by logit regression (high R2 values > 0.9)

• Regression of m1 when n is given : mc = β0 + β1m1 + ε
R2 over 0.97 Slope β1 decreases with n
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Phase transition parameter
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1 + ε

Adding a scaling factor nα1 (such as TSP)
Estimation using log(mc), R2 = 0.947 (R2 = 0.898 without log)
α1 = −0.75999 : negative ∈ [−1/

√
n, and −1/n]

α2 = 0.90365 : close to 1. log(k) = 1.65453
Hypothesise on phase trans. param. : m n−α1m−α2

1
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B & B computation time
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Sigmoid regression model : t(m) = L
1+e−r(m−mt )

L ≈ γ(2.043 + 0.476(n − 8)) max. value, r rate, and mt inflexion

Median value regressions of R2 = 0.969
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Tabu search success rate
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Analysis using sigmoid regression model :
High regression quality again, follow the shape of mc
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Critical parameter mc v.s. B & B, and Tabu critical param.
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High linear correlation between mc , and critical param. of algorithm
Correlation for tabu search : seems not depend of problem dim. n
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Conclusions

Summary

Propose new QAP benchmark :
Difficulty related to the link between A, and B matrices

Show phase transition across the instances

Hypothesis of phase transition parameter model

Perspectives

Large instances

Compare QAP-SAT with QAPLib,
decompose real-world instances into ”clauses”

Fitness landscape analysis, theoretical investigation
QAP-2-SAT (graph matching), etc.

Different k , clauses, relax the satisfiability condition, etc.

A(3) =

0 1 2
2 0 1
3 1 0

 =

0 ? ?
? 0 ?
? ? 0

 B(3) =

0 1 1
1 0 1
1 1 0

 =

0 1 2
1 0 1
2 1 0


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