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Program for today

1. The Basics of Fitness Landscapes
2. Geometries of Fitness Landscapes
3. Local Optima Network
4

. Multi-objective Fitness Landscapes
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1. The Basics of Fitness Landscapes

e Introductory example
o Brief history and background

N

. Geometries of Fitness Landscapes
3. Local Optima Network

o

. Multi-objective Fitness Landscapes
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Single-objective optimization

@ Search space : set of candidate solutions
X
@ Objective fonction : quality criteria (or non-quality)
f: X—=>R

X discrete : combinatorial optimization
X C IR" : numerical optimization

Solve an optimization problem (maximization)

X* = argmaxy f

or find an approximation of X™*.
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Context : black-box optimization

X — . — f(x)

No information on the objective function definition f

Objective fonction :

@ can be irregular, non continuous, non differentiable . . .

@ given by a computation or a simulation
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Real-world black-box optimization : an example
PhD of M. Muniglia / V. Drouet / B. Gasse, Saclay Nuclear Research Centre (CEA), Paris

X —> — f(x)
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Search algorithms

(implicite) enumeration of a subset of the search space

@ Many ways to enumerate the search space
e Exact methods : A*, Branch&Bound . ..
e Random sampling : Monte Carlo, approximation with
guarantee, bayesian optimization, ...

Local search / Evolutionary algorithms
Neighborhood

% x ® Neighbor Initializationa ... Selection g °
Solution % % ee > o
[} % ® e o
k\ VR
N
\, 8}
) y Replacement Random
\\*~~ _/I P xx’;’;‘ Variation
........ XX X
Accept? x X%
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Stochastic algorithms with a single solution (Local Search)

@ X set of candidate solutions (the search space)
@ f: X — IR objective function

@ N(x) set of neighboring solutions from x

Neighborhood
8 Neighbor
. X %
Solution % %
0 % ®
»
\\ x:, b4
Mo /’
Accept?

So, we need a tool to study this...
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Motivations on fitness landscape analysis

For the search to be efficient, the sequence of local optimization
problems must be related to the global problem J

Main motivation : “Why using local search”

@ Study the search space from the point of view of local search
= Fitness Landscape Analysis

@ To understand and design effective local search algorithms

9/26



origin and definition
©0000000

Fitness landscape : original plots from S. Wright [Wri32]

A

or reduced Selection

Increased Mvutation

4NU, &NS very large

or reduced Mutation

€. Qualitative Change
of Environment
4NU, 4NS very larqe  4NU,&NS very lorge

Increased Selection

D N -

. D. Close Inbreeding LSli?lt Inbreeding F. Division into local Races
- . SR Y 4NU,4NS very small — 4NU,4NS medivm nm medium
Ficure of the field of gene inations in two dimen- Ficure 4—Field of gene combinations occupied by a population within the general field
of possible combinations. Type of history under specified conditions indicated by relation

sions instead of many thousands. Dotted lines represent contours with respect to adap-

tiveness.

to initial field (heavy broken contour) and arrow.

source : Encyclopaedia Britannica Online
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Fitness landscapes in (evolutionary) biology

@ Metaphorical uphill struggle across a “fitness landscape”

e mountain peaks represent high “fitness”
(ability to survive/reproduce)
o valleys represent low fitness
@ Evolution proceeds :
population of organisms
performs an “adaptive walk”

be careful : "2 dimensions instead of many thousands”
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Fitness landscapes as Complex System tool

Dynamical system

Predict, and understand the evolutionary paths

X — X

@ Quasispecies equation : mean field analysis
Xt

@ Stochastic process : Markov chain
Pr(xe+1 | xt)

@ Individual scale : network analysis
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Fitness landscape for combinatorial optimization [Sta02]

Fitness

origin and definition
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Fitness landscape (X, NV, ) :
@ search space :
X
@ neighborhood relation :
N:X —2X
@ objective function :
f:X—=R

Search space
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What is a neighborhood ?

Neighborhood function :
N X —2X

Set of “neighbor” solutions
associated to each solution

Fitness

1

il
NS
IS

N(x)={y e X | y = op(x)}

Search space
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What is a neighborhood ?

Neighborhood function :
N X —2X

Set of “neighbor” solutions
associated to each solution

Fitness

N(x)={y e X |y=op(x)}
N(x) ={y € X | Pr(y = op(x)) > 0}
N(x) ={y € X | Pr(y = op(x)) > €}

Search space
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What is a neighborhood ?

Neighborhood function :
N X —2X

Set of “neighbor” solutions
Fiess _ associated to each solution

N(x)={y e X | y = op(x)}

N(x) ={y € X | Pr(y = op(x)) > 0}
N(x) ={y € X | Pr(y = op(x)) > €}
or

N(x) ={y € X | distance(x,y) = 1}
Ordre
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What is a neighborhood ?

Neighborhood function :
N X —2X

Fitness

Set of “neighbor” solutions
associated to each solution

N(x)={y € X | y = op(x)}
N(x) ={y € X | Pr(y = op(x)) > 0}

Neighborhood must be

based on the operator(s) or
used by the algorithm N(x)={y € X | Pr(y = op(x)) > ¢}
or

Neighborhood < Operator N(x) = {y € X | distance(x, y) = 1}
Ordre
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Typlcal example : bit strings

Search space : X = {0,1}V
N(X) = {y € X | dHamming(Xay) = 1}

Example :
N(01101) = {11101,00101,01001,01111,01100}
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Typical example : permutations

Traveling Salesman Problem :
find the shortest tour which cross one time every town

Search space : X = {0 | 0 permutations }
N(x) = {y € X | y = op2opt(x)}

cf. exchange, insertion, etc.
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More than 1 operator...?

What can we do with 2 operators (ex : memetic algorithm) ?
M) ={yeX|y=op(x)} MNo(x)={yeX|y=op(x)}
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More than 1 operator...?

What can we do with 2 operators (ex : memetic algorithm) ?
M) ={yeX|y=op(x)} MNo(x)={yeX|y=op(x)}

Severals possibilities according to the goal :
@ Study 2 landscapes : (X, N3, f) and (X, N2, f)
e Study the landscape of “union” : (X, N/, f)
N =N UNs ={y € X | y = op1(x) or y = opa(x)}
@ Study the landscape of “composition” : (X, N, f)

N ={y€X|y=opoop(x)with op,op € {id,0p1,0p}}
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Main goals

e Engineering goal :
How to analyze fitness landscape ?
Predict performance, select algorithm / configuration, etc.

e Scientific goal :
Why there is this search dynamic on the problem ?
What are the properties of Fitness Landscape ?
Understand relation between properties, and search dynamic
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Rice's framework for algorithm selection [Ric76]

Algorithm selection

XEF

PERROBHEMCE
SPACE

F
- FEATURE
EXTRACTION

E@EF = B 5i500)

N4

Rice, J. R. (1976). The algorithm selection problem. Advances in computers, 15, 65-118.
v

p{a,x)
FEATURE SELECTION ALGORITHM | PERFORMANCE
SPACE MAPPING SPACE MAPPING
(S L R—

||p|| = ALGORTTHM PERFORMANCE

peR”
PERFORMANCE
PEMEASHRECE
SPACE

Goal
0®0000
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Fitness landscape analysis
Algebraic approach, grey-box : Statistical approach, black-box :
_ Problems ~~ Features
Af = A (f —f) ~ Algorithm ~ Performances

Goals

Fitness landscape analysis

/\

Online extraction

Offline extraction
of features of local features
Understanding of the Prediction
the search space structure of performance
Additional Selection: Design of Offline selection ~ Parameters Adaptive selection Parameters
knowledge - representation, algorithm of algorithm tunning of algorithm control
- objective fonction,
- neighborhood, algorithm, etc.
[MWS91] [TPCO8] [Fon99] [Xu+08] [SP94]
[MwW92] [LI08] [AZS02] [Gre95] [Fia+10]
[Col+06] [MF00] [MFO00] [LLY11] [BP14]
[Ma+11] [AR14] [Ma+12] [Me+11] [GLS16]
[Jan+16]

20/26



optimization origin and definition Goal
000000 00000000 000@00000

J. J. Grefenstette, in FOGA 3, 1995.[Gre95]

" Predictive Models Using Fitness Distributions of Genetic Operators”

" An important goal of the theory of genetic algorithms is to build predictive models of how well genetic algorithms

are expected to perform, given a representation, a fitness landscape, and a set of genetic operators. (...)"

FD,,(F,) = Prob(F, = fitness of offspring | parents have mean fitness F,)
Regression: y = 0.216 +0.677x, r = 0.992

— Select Representation and Operators
I ‘ |
08-| ) M
Test Representation and Operators Fun?ss 06 * WM Los

0 02 04 06 08 1
I I I

of
J{ Offspring 0.4 | 04
02" o2
Evaluate Predictive Model of GA
0 0
T T T T
J{ 0 02 04 06 08 1
Fitness of Parent
0 10 20 30 40 50 60 70 80 90 100
Acceptable Expected Result? 1 L1 - Ll
No Dynamic Estim R
08| a
Yes 06
Population
Average | Loa
Run the GA 02| Loz
. . o T T T T T T T T
Figure 1: Predicting GA Performance 0 10 20 30 40 50 60 70 80 90 100

Genarations
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Typical use cases of fitness landscapes analysis

@ Comparing the difficulty of two landscapes :

o one problem, different encodings : (X1, N1, 1) vs. (X2, N2, f)
different representations, variation operators, objectives . ..

Which landscape is easier to solve ?
@ Choosing one algorithm :
e analyzing the global geometry of the landscape
Which algorithm shall | use?
© Tuning the algorithm’s parameters :
e off-line analysis of the fitness landscape structure

What is the best mutation operator ? the size of the
population ? the number of restarts? ...

@ Controlling the algorithm’s parameters at runtime :
e on-line analysis of structure of fitness landscape
What is the optimal mutation operator according to the
current estimation of the structure?
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Beyong the use cases of fitness landscapes analysis : Why

@ Comparing the difficulty of two landscapes :

o one problem, different encodings : (X1, N1, 1) vs. (X2, N2, f)
different representations, variation operators, objectives . ..

Which landscape is easier to solve ?
@ Choosing one algorithm :
e analyzing the global geometry of the landscape
Which algorithm shall | use?
© Tuning the algorithm’s parameters :
e off-line analysis of the fitness landscape structure

What is the best mutation operator ? the size of the
population ? the number of restarts? ...

@ Controlling the algorithm’s parameters at runtime :
e on-line analysis of structure of fitness landscape
What is the optimal mutation operator according to the
current estimation of the structure?
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Short summary for this part

Studying the structure of the fitness landscape
allows to understand/explain the difficulty,
and to design better optimization algorithms

The fitness landscape is a graph (X, N, f) :
@ nodes are solutions and have a value (the fitness)

@ edges are defined by the neighborhood relation

pictured as a real landscape

So next, what are the properties (features), how have been
designed, what are their meanings?
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1. The Basics of Fitness Landscapes
2. Geometries of Fitness Landscapes

e Ruggedness and multimodality
o Neutrality

3. Local Optima Network

4. Multi-objective Fitness Landscapes
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Metrics, features of fitness landscape

Main idea

The "shape” of the neighborhood (local description)
is related to
the dynamics of the local search, and its performance

Main questions

@ How to design relevant metrics ?
@ What are the meaning of the metrics (benefits, and caveats) ?

@ How to estimate the metrics ?

In the following, a comprehensive methodology of fitness analysis
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Fitness distribution : Density of states

60000
|

40000
1

frequency

20000
|

0
L

I T T T I 1
03 04 05 06 07 08

fitness

density of fitness values across the search space
@ Introduced in physics : Rosé 1996 [REA96]
@ In optimization : Belaidouni, Hao 00 [BHOO]
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Fitness distribution : Density of states

60000

40000

frequency

20000
1

0
L

I T T T 1 1
03 04 05 06 07 08

fitness
Interpretations :
@ Performance of random search
@ The faster the decay, the harder the problem
@ Not so far from a normal distribution (in practice, and theory)

Features : Average, sd, kurtosis, ...
Estimation : Sample of random solutions (size ~ 103)
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Fitness cloud [verel et al. 2003]

e (X, F,Pr) : probability
space

@ op: X — X stochastic
operator of the local search

e X(s)="f(s)
° Y(s) = f(op(s))

Fitness Cloud of op

Conditional probability density
function of Y given X

Fitness f(op(s))

Fitness f(s)
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Fitness cloud : a measure of evolvability

Evolvability

3 Ability to evolve : fitness
in the neighborhood vs
Average  fitness of current solution
Stand. dev.

" Prob. increase

@ Probability of finding
better solutions

@ Average fitness of
better neighbors

Fitness f(op(s))

@ Average and standard
dev. of fitness-values

Fitness f(s)
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Fitness cloud : comparing difficulty

Average of evolvability

Fitness f(op(s))

Avg(op 1)

Avg(op 2)

Fitness f(s)

@ Operator 177 Operator 2
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Fitness cloud : comparing difficulty

Average of evolvability

+ @ Operator 1 > Operator 2

Because Average 1 more

Avg(op 1) correlated with fitness

Linked to autocorrelation

Avg(op 2)
Average is often a line :

e See works on Elementary
Landscapes (Stadler, D.
Wihtley, F. Chicano and
others)

o See the idea of Negative

Fitness f(s) Slope Coefficient (NSC)

Fitness f(op(s))
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Fitness cloud : comparing difficulty

Probability to improve

@ Operator 1?7 Operator 2

pHop 1)

Prob. to Improve

pHop 2)

Fitness f(s)
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Fitness cloud : comparing difficulty
Probability to improve

Prob. to Improve

Fitness f(s)

@ Operator 1 > Operator 2

@ Prob. to improve of Op 1
is often higher than
Prob. to improve of Op 2

@ Probability to improve is
often a line

@ See also works on
fitness-probability cloud
(G. Lu, J. Li, X. Yao
[LLY11])

@ See theory of EA and fitness

level technics
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Fitness cloud : estimating the convergence point

4+

4

@ Approximation (only
approximation) of the
fitness value after few
steps of local operator

Average

A

@ Indication on the quality
of the operator

Fitness f(op(s))

@ See fitness level technic

fo fl f2f3

Fitness f(s)
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Random walk tools

Fitness cloud Estimator :
Random solutions, and one random neighbor
ex. sample size ~ 2 x 103 (at least 2nlog(n) to sample all dim.)

w |
|

WWW MW WW M i

0.55

Fitness

0.

3

|
w

W

0 200 400 600 800 1000
Step

0.45

04

e Random walk :
(x1,x2,...) where x;+1 € N(x;) and equiprobability on N (x;) J

ex. sample size =~ 103 (at least nlog(n) to sample all dim.)
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Random walk to estimate

Fitness

TR
I

ruggedness

0.65

0.6

0.55

Fitness

0.

0.45

(5
—_—
—
—
=_
‘é’;—‘:};
T
-
!s
e
——

0.4
0 200

400
Step

800

Gives useful information on the profile of fitness landscape,
and on local properties (neighborhood)

Interpretation :

@ if the profile of fitness is irregular,

@ then the “information” between neighbors is low

Feature :

@ Study the fitness profile as a signal

1000
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Rugged /smooth fitness landscapes

0.65
06} /N ] Autocorrelation function of the
5 055 " ; h | m time series of fitness-values
J‘W\Wﬂ"w \ | W“Ww i ol
4! _ _
0.45 | Hm‘ l‘J w o(n) = E[(f(xi) — F)(f(xixn) — )]
04 0 200 400 600 800 1000 Va'r( f(X’))
Step
1 o Autocorrelati_oln length
G 0.8 B 1 T = Tog (1)
3 osf 1 “How many random steps such that
£ oal ] correlation becomes insignificant”
=0 Other correlation metrics are possible
O a2 0 @ s 1o e.g. Kendall, entropy (see [])
lagn
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Rugged /smooth fitness landscapes : sign epistasis

Xl yl X| yl
+ -
5 8 8
5 3 5
+ +
X y X Y

Degree of epistasis :
Ratio of "negative” square (i.e. Kendall correlation coeff.)

References :

Biology : Poelwijk et al. [PKWTO07]
EA : Basseur et al. [BG15]

Estimator : sample size ~ 2.103
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"Easy / Difficult” landscapes

1

k=8 ——

\ k=2 -
= 0.8
=z
® 06
Q
o
5 o4t
(53
2
2 02}

ot
0 20 40 60 80 100

lagn

Which landscape is "easier” ? Green or red one?
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"Easy / Difficult” landscapes

1

k=8 ——

\ k=2 -
= 0.8
=z
® 06
Q
o
5 o4t
(53
2
2 02}

ot
0 20 40 60 80 100

lagn

Which landscape is "easier” ? Green or red one?

@ small 7 : rugged landscape, more difficult landscape

@ long 7 : smooth landscape, easier landscape
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Theoretical results on autocorrelation (Stadler 96 [Sta96])

Ruggedness decreases with the size of those problems

’ Problem parameter p(1)
symmetric TSP n number of towns 1-— %
anti-symmetric TSP n number of towns 1-— nfl
Graph Coloring Problem n number of nodes 1-— (a2_oi)n

« number of colors
NK landscapes N number of proteins 1 %
K number of epistasis links
random max-k-SAT n number of variables 1-— n(1f2_k)

k variables per clause
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Fitness distance correlation (FDC) (Jones 95 [Jon95])

Correlation between fitness and distance to global optimum

0.7 0.8
0.65 0.75 i
o8l 0.7
@ 055 2
g 2 os65
0.45 06 .
0.4 0.55
0.35 0.5
0 5 10 15 20 25 0 5 10 15 20 25
Distance Distance
“ " “ "
easy hard

Classification based on experimental studies
@ p < —0.15 : easy optimization
@ p > 0.15 : hard optimization
@ —0.15 < p < 0.15 : undecided zone
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Fitness distance correlation (FDC) (Jones 95 [Jon95])

Correlation between fitness and distance to global optimum

0.7
0.65

0.6

0.55
0.5

Fitness

0.45
0.4
0.35

10 15
Distance

ueasyvv

20 25

Fitness

0.8
0.75
0.7
0.65
0.6

0.55

0.5
0

5 10 15
Distance

“hard"”

@ Important concept to understand search difficulty

@ Not useful in “practice”
(difficult to estimate, global opt. unknown)

25
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Random walks on real world problems

Random walk on the problem of
"nuclear power plant design” [MVLPD17]

10000

8000

Fitness

6000

4000

750 800 850 900 950 1000
Step

@ Move/Mutation without fitness change (here ~ 30%)
@ Low impact of variable modification, " flat” shape
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Neutral fitness landscapes

Neutral theory (Kimura ~ 1960 [Kim83])

Theory of mutation and random drift

Many mutations have no effects on fitness-values

Fitness

@ plateaus

@ neutral degree

@ neutral networks
[Schuster 1994
[SFSH94], RNA
folding]
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Neutral degree

Neutral neighborhood

Set of neighbors which have the same fitness value

Naeutral(x) = {x" € N(x) | f(x') = f(x)}

Nota : f(x") = f(x) can be replaced by |f(x') — f(x)| < e.

Neutral degree
Number of neutral neighbors : tNeutrar(X)

Neutral rate

Relative number of neutral neighbors : %’%ﬂ
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Estimation of the neutral rate with random walk

@ The neutral rate can be estimated with a random walk : J

(x1,x2,-..,x0) where x¢11 € N(xt)

Neutral rate estimation [LDV*17]

H{(xe, xer1) @ f(xe) = Fxea), t € {1, —1}}
/-1

Nota : With single random walk, fitness distribution, autocorrelation of fitness,

probability of improvement, neutral rate can be estimated
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Neutral networks (Schuster 1994 [SFSH94])

=2

Fitness
Fitness

Basic definition of Neutral Network

Graph where :
@ Node = solution with the same fitness-value

@ Edge = neighborhood relation
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Features of neutral networks

<]

AN

| G

@ Size

avg, distribution . ..

@ Neutral degree
distribution

2 3

Frequency

55555555
Neutral Degree

© Autocorrelation of the

neutral degree

e neutral random walk
e autocorr. of degrees

© Evolvability metrics,
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Multimodal fitness landscapes

Local optima x*

no neighboring solution with strictly better fitness value
(maximization)

Vx € N(x*), f(x)<f(x¥)

Fitness

Iy
AN
//l’l"' %\\%\

Vil I

DAY
RS
...,/%%w

—

2

Search space

nota : If /' is modified (distance, op), the local optima are modified
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Typical example : bit strings

Search space : X = {0,1}V
N(X) = {y e X | dHamming(Xay) = 1}

multimodality
0®0000

Example :

x = 01101 and fi(x) = fa(x) = (x) =5

11101 | 00101 | 01001 | 01111 | 01100
fi 4 2 3 0 3
H 2 3 6 2 3
f3 1 5 2 2 4

Is x is a local maximum for f1, f;, and/or 37 l

23/44
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Not so typical example : continuous optimization

Still an open question...

X4

Search space : X = [0,1]¢

@ Na(x)={y e X | |ly —x[| < a}
with o > 0

X2

Classical definition of local optimum

x is local maximum iff
Je > 0,Vy such that |y — x|| < e, f(y) < f(x)

\

Questions

Local search definition with N, = classical definition ?
Classical definition = local search definition with A/, ?

\
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Not so typical example : continuous optimization

Still an open question...

X4

Search space : X = [0,1]¢

@ Na(x)={y e X | |ly —x[| < a}
with o > 0

X2

Classical definition of local optimum

x is local maximum iff
Je > 0,Vy such that ||y — x|| <&, f(y) < f(x)

\

Questions

Local search definition with N, = classical definition ?
Classical definition = local search definition with A/, ?

\

Still some works to do...
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Sampling local optima by adaptive walks

Adaptive walk
(x1,%2,...,xp) such that xj11 € N(x;) and f(x;) < f(xj+1)

Hill-Climbing algorithm (first-improvement)

Choose initial solution x € X
repeat
choose X’ € {y € N(x) | f(y) > f(x)}
if f(x) < f(x’) then
x X'
end if
until x is a Local Optimum

Basin of attraction of x*

{x € X | HillClimbing(x) = x*}.
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Multimodality and problem difficulty

The core idea :

@ if the size of the basin of
attraction of the global
optimum is “small”,

Finess @ then, the “time” to find the
| global optimum is “long”

Optimization difficulty :
Number and size of the basins of
attraction (Garnier et al. [GK02])

Search space

Feature to estimate the basins size :

o Length of adaptive walks

cost : sample size X £ x |\
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Multimodality and problem difficulty

Length of adaptive walk

Length of adaptive walk

ex.

200

180
160
140
120
100
80
60
40
20

64 128 256

260

240
220

180
160
140
120
100

nk-landscapes with n = 512

The core idea :

@ if the size of the basin of
attraction of the global
optimum is “small”,

o then, the “time” to find the
global optimum is “long”

Optimization difficulty :
Number and size of the basins of
attraction (Garnier et al. [GK02])

Feature to estimate the basins size :
o Length of adaptive walks

cost : sample size X £ x |\
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Example

2 instances of the same problem :
same problem dimension, same neighborhood operator

tfl—f | o P

pb1
I

T T T T T
10 20 30 40 50

Adaptive walks length distribution

Which one seems to be easier? \
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Example

2 instances of the same problem :
same problem dimension, same neighborhood operator

pb2

pb1

T T T T T
10 20 30 40 50

Adaptive walks length distribution

Which one seems to be easier ? problem 2 \
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Example

2 instances of the same problem :
same problem dimension, same neighborhood operator

pb2
I
(e}

pb1
I

T T T T T
10 20 30 40 50

Adaptive walks length distribution

Which one seems to be easier ? problem 2 \

Indeed, basic hypothesis (but only hypothesis) :
1X =29 | #Basin = 2
Avg. number of local opt. : log(#X/fBasin) = (ol — d) log 2
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Practice : the Squares Problem

a program design problem ?

Squares Problem (SP)

Find the position of 5 squares Candidate solutions

in order to maximize inside

X = ([0,1 1 5
squares the number of brown 10, e < |1, o)

X1 X
points without blue points 1 577 701
2 609 709
1000 3 366 134
4 261 408
oo 5 583 792

4

8 w0 Fitness function

f(x) = number of brown points
— number of blue points
inside squares

0 250 500 750 1000
x1
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Practice : computing the autocorrelation function

Source code ex002.R :

@ mutation _create :
Create a mutation operator,
modify each square according to rate p,
a new random value from [(x — r,y — r),(x + r,y + r)].

@ main :
Code to obtain autocorrelation function

o

@ Define the function random walk to compute the fitness
values during a random walk

@ Execute line by line the main function to compute a sample of
fitness value collected during a random walk

@ Compare the first autocorrelation coefficient of the SP
problems 1 and 2
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Source code in R : ex01.R

Source code : https://Www—lisic.univ-littoral.fr/"verel/J

Different functions are already defined :
@ main : example to execute the following functions

@ draw and draw_solution :
draw a problem and the squares of a solution

@ fitness_create:
create a fitness function from a data frame of points

@ pbl_create and pb2_create :
create two particular SP problems
@ init :
create a random solution with n squares

@ hcngh:
hill-climbing local search based on neighborhood

30/44
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ruggedness neutrality multimodality Practice

0000000000000 000000 000000 000@000000000000O

Neighborhood

@ Execute line by line the main function

@ Define the neighborhood _create which creates
a neighborhood : a neighbor move one square
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Adaptive walks to compare problem difficulty

Pre-defined functions :

@ adaptive_length :
run the hill-climber and compute a data frame with the length of
adaptive walks

@ main_adaptive_length_analysis :
Compute the adaptive length of two different SP problems

@ Execute line by line the main adaptive length analysis
function to compute a sample of adaptive walk lengths

@ Compare the lengths of adaptive walks for the two SP
problems

@ Which one is more multimodal ?
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Practice : computing the neutral rate

Source code ex003.R :

@ main :
Code to compute the neutral rates

v

@ Define the function neutral_rate to compute the neutral
rate estimated with a random walk

@ Execute the main function to compute the neutral rate

@ Compare the neutrality of the SP problems 1 and 2
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Practice : Performance vs. fitness landscape features

Explain the performance of ILS with fitness landscape features? J

@ 20 random SP problems have been generated : pb_xx.csv

@ The performance of lterated Local Search has been computed
in perf_ils_xx.csv (30 runs)

@ Goal : regression of ILS performance with fitness landscape
features
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Practice : Performance vs. fitness landscape features

Source code exo004.R :

@ fitness_landscape_features :
Compute the basic fitness landscape features

@ random_walk_samplings :
Random walk sampling on each problem (save into file)

@ fitness_landscape_analysis :
Compute the features for each problems

@ ils_performance :
Add the performance of ILS into the data frame

@ main :
Execute the previous functions
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Practice : Performance vs. fitness landscape features

@ What are the features computed by the function
fitness_landscape_features?

o Execute the random walk samplings function to compute
the random walk samples

@ Compute the correlation plots between features and ILS
performance (use ggpairs)

@ Compute the linear regression of performance with fitness
landscape features
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Practice : example of results

Adaptive walk lengths Random walks

\\\\\

’ pbl : p(1) = 0.9856, nr = 0.513
Correlation between features pb2 : p(1) = 0.9872, nr = 0.498 J

ILS perf. prediction (lin. mod.)

pbl is "easier" than pb2

D R? = 0.69
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Short summary

Geometries :
Multimodality, ruggedness, neutrality

Metrics/features based on the neighborhood :
probability to improve, fitness distribution, sign, etc.
Covariance of the metrics across search space :
autocorrelation, pearson/spearman/kendall correlation,
entropy, etc.

e Estimation of metrics/features :
random sampling, random walk, adaptive walk, etc.
sample size, length, number : use sampling methodology
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QOutline

1. FheBasies-of Fitness-tandseapes

2. Geemetries-of FitnessLandseapes
3. Local Optima Network

o Features from the network, algorithm design and performance
e Performance prediction and algorithm portfolio

4. Multi-objective Fitness Landscapes
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@ Gabriela Ochoa, University of StirlingUK
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Key idea : complex system tools

Principle of variable aggregation

A model for dynamical systems with two scales (time/space)

@ Split the state space according to the different scales

@ Study the system at the large scale
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Key idea : complex system tools

Principle of variable aggregation

A model for dynamical systems with two scales (time/space)
@ Split the state space according to the different scales

@ Study the system at the large scale

Variable aggregation for fitness landscape

@ At solutions level (small scale) :
o .
X P X ° Stochastlg local search opera}tor
e Exponential number of solutions
e Exponential size of the stochastic matrix
of the process (Markov chain)

@ Projection on a relevant space :
o Reduce the size of state space
e Potentially loose some information
o Relevant information remains when

p(op(x)) = op'(p(x))
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Key idea : complex system tools

Principle of variable aggregation

A model for dynamical systems with two scales (time/space)
@ Split the state space according to the different scales
@ Study the system at the large scale

Variable aggregation for fitness landscape

@ At solutions level (small scale) :

X _°° . x ° Stochastig local search opera}tor
e Exponential number of solutions
pl lp e Exponential size of the stochastic matrix

, of the process (Markov chain)
op .
E— E @ Projection on a relevant space :

o Reduce the size of state space
e Potentially loose some information
o Relevant information remains when

p(op(x)) = op'(p(x))

3/47
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Key idea : complex system tools

Complex network

Bring the tools from complex networks analysis to study the
structure of combinatorial fitness landscapes

Methodology

@ Design a network that represents the landscape
o Nodes : local optima
e Edges : a notion of adjacency between local optima

o Extract features :

e ‘“complex” network analysis

@ Use the network features :

e search algorithm design, difficulty . ..

J. P. K. Doye, The network topology of a potential energy landscape : a static
scale-free network., Phys. Rev. Lett., 88 :238701, 2002. [Doy02]
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Energy surface and inherent networks

Inherent network

@ Nodes : energy minima

o Edges : two nodes are connected if the energy barrier
separating them is sufficiently low (transition state)

®)]
(a) Energy surface @ ) ’
(b) Contours plot : . ‘
partition of states space into | b «
basins of attraction

\\ O////@\h\\f

(c) Landscape as a network

F. H Stillinger, T. A Weber. Packing structures and transitions in liquids and solids. Science, 225.4666 , p. 983-9,
1984. [SW84

J. P. K. Doye, The network topology of a potential energy landscape : a static scale-free network. Phys. Rev. Lett.,
88 :238701, 2002. [Doy02]
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Basins of attraction in combinatorial optimization
Example of a small NK landscape with N =6 and K =2

[ [ L ® e Bit strings of length N =6
e 2% = 64 solutions

[ ) [ ) [ ) [ ) int = i
e e e e @ one point = one solution
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Basins of attraction in combinatorial optimization
Example of a small NK landscape with N =6 and K =2

o Bit strings of length N =6

@ Neighborhood size = 6

@ Line between points =
solutions are neighbors

@ Hamming distances between
solutions are preserved
(except for at the border of
the cube)
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Basins of attraction in combinatorial optimization
Example of small NK landscape with N =6 and K =2

The color represents the
fitness-values

@ high fitness

® |ow fitness
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Basins of attraction in combinatorial optimization
Example of small NK landscape with N =6 and K = 2

@ Color represent fitness value
19 @ high fitness
® [ow fitness
— o —7 point towards the
BB solution with highest fitness
in the neighborhood

Why not making a Hill-Climbing
walk on it ?
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Basins of attraction in combinatorial optimization
Example of small NK landscape with N =6 and K =2

one basin of attraction

e ® ‘# @ Each color corresponds to
‘e ."-

@ Basins of attraction are
interlinked and overlapped

@ Basins have no “interior”
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Basins of attraction in combinatorial optimization
Example of small NK landscape with N =6 and K = 2

@ Basins of attraction are interlinked and overlapped !

@ Most neighbors of a given solution are outside its basin
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complex systems

0000 000000

Local optima network

(;/’—‘t:> 0.185
X
0. 29

0.65

LON features

understanding performance
0000000

predicting performance
0000000000000 0

@ Nodes :
local optima
o Edges :
transition probabilities

0.055
fit=0.7046
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Local optima network

Definition : Local Optima Network (LON)
Oriented weighted graph (V, E, w)
@ Nodes V : set of local optima {LOs,...,LO,}

@ Edges E : notion of connectivity between local optima
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Local optima network

Definition : Local Optima Network (LON)
Oriented weighted graph (V, E, w)
@ Nodes V : set of local optima {LOs,...,LO,}

@ Edges E : notion of connectivity between local optima

v

2 possible definitions for edges

o Basin-transition edges :
transition between random solutions from basin b; to basin b;

([OTVDO8], [VOTO8], [TVO08], [VOT10])

o Escape edges :
transition from Local Optimum i to basin b;

(EA 2011, GECCO 2012, PPSN 2012, EA 2013 [DVOT13])

v
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Basin-transition edges : random transition between basins

ejj between LO; and LO; if 3 x; € bj and x; € bj : xj € N(x;)

Prob. from solution x to solution x’

p(x = x') = Pr(x’ = op(x))

Prob. from solution s to basin b;
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LON with escape edges

Definition : Local Optima Network (LON)

Orienter weighted graph (V, E, w)
o Notes V : set of local optima {LOs,...,LO,}

@ Edges E : notion of connectivity between local optima

Edge ej; between LO; and LO;
if 3x : distance(LO;,x) < D and x € b;

wjj = ﬂ{x e X | d(LO;,X) <D, x¢& bj}

can be normalized by the number of solutions at
distance D
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LON with escape edges

Definition : Local Optima Network (LON)

Orienter weighted graph (V, E, w)
o Notes V : set of local optima {LOs,...,LO,}

@ Edges E : notion of connectivity between local optima

Edge ej; between LO; and LO;
if 3x : distance(LO;,x) < D and x € b;

Weights
wjj = ﬂ{x e X | d(LO;,X) <D, x¢& bj}

can be normalized by the number of solutions at
distance D

N
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Methodology

Design, and understand LON metrics
on tunable enumerable problem instances
nk-landscapes, gap, ubqp, flow-shop

Understand, and predict algorithm performances
on enumerable instances

Define sampling techniques for large size instance

Understand, and predict algorithm performances
on large instances
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NK-landscapes
[Kauffman 1993] [Kau93]

x€{0,1}"  f(x) =150 fi(x, X0 %)

Two parameters

@ Problem size n
@ Non-linearity k < n
(multi-modality, epistatic interactions)
o k=0 : linear problem, one single maxima
2N

o k=n—1:random problem, number of local optima =5

note : similar results for QAP and flowshop
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Basins of attraction features

e Basin of attraction :
o Size :
average, distribution ...
e Fitness of local optima :
average, distribution, correlation ...
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Global optimum basin size vs. non-linearity degree k

N=16 ——

N=18 e

@ Basin size of maximum
~ decreases exponentially
iy with non-linearity degree

0.001

0.0001

Normalized size of the global optima’s basin

e = Difficulty of
L A (best-improvement)
hill-climber from a random

1e-05

Size of the global maximum basin solution
as a function of
non-linearity degree k
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Fitness of local optima vs. basin size

i The highest, the largest ! |
8 1000 ’
H @ On average, the global
g @ . . . .
E optimum is easier to find
S than one given other local
, optimum
0.5 0.55 0.6 0.65 0.7 0.75 0.8 ) )
finess of local optima @ ... but more difficult to find,
Correlation fitness of local as the number of local
optima vs. their corresponding optima increases
basins sizes exponentially with k
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Features form the local optima network

nv : fvertices

Iv : avg path length
dj = 1/wj

@ /o : path length to best

fnn : fitness corr.

(F(x), f(y)) with (x,y) € E
wii : self loops

wcc . weighted clust. coef.
zout : out degree

y2 : disparity

knn : degree corr.

(deg(x), deg(y)) with (x,y)

predicting performance
00000000000000

€ E

21/47
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Structure of the local optima network

o NK-landscapes (small instances) :
most of features are correlated with k
relevance of the LON definition

10
—— Basins
£ - EscD1
8 o8 -+~ Esc.D2
3
o 06 s
g H
2 04 &
H
3
g
g
g o2
5 & 6 & 1o 12 14 16 18 0.001 001 01
K w

0.200
0.100:

0.050

0.020

average disparity Y2

°
=4

0.0054 -

=17
random

1 5 10 50
out-degree

a | ONl ic nat a randam natwnrk (NNK OAP FQQP) - I
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Example : clustering coefficient for NK-landscapes

1.01
—e— Basins
*g -+- Esc.D1
o 084 -=- Esc.D2
5
Q
(8]
cEn 0.6
I3
3
5 044
(o]
()]
©
2 021
©

@ Network highly clustered

o Clustering coefficient decreases with the degree of
non-linearity k
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LON to compare instance difficulty
Local Optima Network for the Quadratic Assignment Problem (QAP) [DTVO11]

— Community detection, Funnel, Fractal dimension

Random instance

Real-like instance

9] [¢]
[} 0
0 o
0@ o g\ P °
O O o
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Q Q @ o
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©
o e} o o
Q OOOO. (0} s
AN i A o
o po Q. og o o
S o it
! oOO ol /O °
et SIS St
Ry OO. 002 o o
O o
o0 o o o
e o
.DO 0.0 o °
eor) ®
O @9 «°
o o @
oo/ O o]
o o e]
o [
o
o °o )

the structure of the LON is related to problem difficulty J
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Configuration : LON to compare algorithm components (1)

comparaison of operators for the Flowshop Scheduling Problem )

104
™ 1"' %I'F |r
H
.
£
308
’é Operator
o ES exchange
3
£ B8 insertion
s
Los
El
o
04
.
| | : | | !
5 7 8 10
Number of Machines
150+
£
=3
5
=100 Operator
£
i ES exchange
<
° B insertion
g
3
2 504 *

Number of Machlnas
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Configuration : LON to compare algorithm components (2)

comparaison of the hill-climbing’s pivot rule for NK-landscapes :
First vs. Best improvement HC ’

K fe/ 1, Y d dbest
b-LON | f-LON | b-LON | f-LON | b-LON | f-LON | b-LON | f-LON

2 0.81 0.96 0.326 0.110 56 39 16 12
4 0.60 0.92 0.137 0.033 126 127 35 32
6 0.32 0.79 0.084 0.016 170 215 60 70
8 0.17 0.65 0.062 0.011 194 282 83 118
10 0.09 0.53 0.050 0.009 206 340 112 183
12 0.05 0.44 0.043 0.008 207 380 143 271
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Information given by the local optima network

Advanced questions

@ Can we explain the performance from LON features ?
@ Can we predict the performance from LON features ?

@ Can we select the relevant algorithm from LON features ?
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Correlation matrix (small size problem instances)
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understanding performance
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LON features vs. performance : simple correlation

Algorithm : lterated Local Search on NK-landscapes with N = 18

Performance : ert = E(T;) + (%) T oo
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ILS performance vs LON metrics
NK-landscapes [DVOT12]

,,,,,,,,,,,,,, o o om

: : o oo oG
g 169 i Re=0766 | °n3a4508a°
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average distance to the global optimum

Expected running time
vs.

Average shortest path to the global optimum
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ILS performance vs LON metrics
Flow-Shop Scheduling Problem [EA'13]

D=1 D=2

o
p
exchange

—+- insertion

o o o
> A %
r ' '

ngth with Restarts

Estimated Run-L¢
o

L R S e s S B e
o' 10®  10®*  10* 10° 10" 10® 10°  10*
Average Length to the Global Optimum

Expected running time
vs.
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LON features vs. performance : multi-linear regression

understanding performance
00000e0

© Multiple linear regression on all possible predictors :

log(ert) = Bo + 1k + B2 log(nv) + Ba2lo + - - - + Broknn + €

@ Step-wise backward elimination of each predictor in turn

Predictor Bi Std. Error p-value

(Intercept) 10.3838  0.58512 9.24.10~*
lo 0.0439  0.00434 1.67-10-20
zout —0.0306  0.00831 2.81-107%4
y2 —7.2831  1.63038 1.18-107
knn —0.7457  0.40501 6.67-10702

Multiple R? : 0.8494, Adjusted R? : 0.8471
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understanding performance
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LON features vs. performance : multi-linear regression

for the Flowshop Scheduling Problem using exhaustive seIectionJ

iP | log(Ny)  CCY  Fun  knn r log(Lope) log(Lv) wi Y2 ko | Cp  adjR?
1 2.13 265.54 0.574
2 —5.18 1.43 64.06 0.675
3 1.481 0.895 —0.042 | 16.48 0.700
4 —2.079 1.473 0.540 —0.032 | 875 0.704
5 —2.388 —1.633  1.470 0.528 —0.030 | 5.97 0.706

Explicability using feature importance in an interpretable model
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predicting performance
©000000

Sampling methodology for large-size instances

Two mains techniques (Thomson et al. [TOVV20]) :
@ Random walk on local optima network

@ Adaptive walk lon local optima network
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predicting performance
0®00000

Sampling methodology for large-size instances

From the sampling of large-size complex network :
@ Random walk on the network
@ Breadth-First-Search
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predicting performance
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Set of estimated LON features for large-size instances

fit
wii
zout
A
knn
wce
fnn

LON metrics

Average fitness of local optima in the network
Average weight of self-loops

Average outdegree

Average disparity for outgoing edges
Weighted assortativity

Weighted clustering coefficient

Fitness-fitness correlation on the network

Ihc
mlhc
nhc

Metrics from the sampling procedure

Average length of hill-climbing to local optima
Maximum length of hill-climbing to local optima
Number of hill-climbing paths to local optima
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predicting performance
000®000

Performance prediction based on estimated features

Optimization scenario using off-the-shelf metaheuristics :
TS, SA, EA, ILS on 450 instances for NK and QAP

Performance measures :
average fitness / average rank

Regression model :
multi-linear model / random forest

@ Set of features :
e basic : 1* autocorr. coeff. of fitness (rw of length 10°)
Avg. fitness of local optima (10° hc)
Avg. length to reach local optima (10% hc)
e lon : see previous
e all : basic and lon features

Quality measure of regression :
R? on cross-validation (repeated random sub-sampling)
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R? on cross-validation for NK-landscapes and QAP

Sampling parameters : length ¢ =

100, sampled edge m = 30, deep d =2

predicting performance
0000®00

NK QAP

Mod. Feat. Perf. TS SA EA ILS avg TS SA EA ILS avg

Im basic  fit 0.8573 0.8739 0.8763 0.8874 0.8737 -38.42 -42.83 -41.63 -39.06 -40.48
Im lon fit 0.8996  0.9015 0.9061 0.8954 0.9007 0.9995 1.0000 1.0000 0.9997 0.9998
Im all fit 0.9356 0.9455 0.9442 0.9501 0.9439 0.9996 0.9997 0.9999 0.9997 0.9997
Im basic rank 0.8591 0.9147 0.6571 0.6401 0.7678 0.2123 0.8324 -0.0123 0.4517 0.3710
Im lon rank 09517 0.9332 0.7783 0.7166 0.8449 0.7893 0.9673 0.8794 0.9015 0.8844
Im all rank  0.9534 0.9355 0.7809 0.7177 0.8469 0.6199 0.9340 0.8577 0.9029 0.8286
rf basic  fit 0.9043 09104 0.9074 0.8871 0.9023 0.8811 0.8820 0.8806 0.8801  0.8809
rf lon fit 0.8323 0.8767 0.8567 0.8116 0.8443 0.9009 0.9025 0.9027 0.9019  0.9020
rf all fit 0.8886  0.9334 0.9196 0.8778 0.9048 0.9431 0.9445 0.9437 0.9429 0.9436
rf basic rank 0.9513 0.9433 0.7729 0.8075 0.8687 0.9375 0.9653 0.8710 0.9569  0.9327
rf lon rank 09198 0.9291 0.7979 0.7798 0.8566 0.9308 0.9630 0.8820 0.9601  0.9340
rf all rank  0.9554 0.9465 0.8153 0.8151 0.8331 0.9381 0.9668 0.8779 0.9643 0.9368
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Observed vs. estimated performance

predicting performance

[eJelelele] lo}

@ On the 32 possibles cases (Mod. x Feat. x Algo.),

the best set of features : all 27 times, lon 12 times, basic 6 times

@ With linear model : basic set is never the one of the best set,
lon features are more linearly correlated with performance

@ Random forest model obtains higher regression quality :

basic can be one of the best set (2 times)

Nevertheless, 7/8 cases, all features are the best one

Estimation

150 200 250

100

50 100 150 200 250
Performance

basic, R? = 0.9327

Estimation

100

24
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Estimation

100

200 250

150

50 100 150 200 250
Performance

lon, R? = 0.9601

50 100 150 200 250
Performance

all, R? = 0.9643
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Portfolio scenario

@ Portfolio of 4 metaheuristics : TS, SA, EA, ILS

predicting performance

0O00000e

@ Classification task : selection of one of the best metaheuristic

@ Models : logit, random forest, svm

@ Quality of classification :

error rate (algo. is not one of the best) on cross-validation

Avg. error rate

Probl.  Feat. logit rf svm cst rnd
basic  0.0379 0.0278 0.0158

NK lon 0.0203 0.0249 0.0168 0.4711 0.6749
all 0.0244 0.0269 0.0165
basic 0.0142 0.0107 0.0771

QAP lon 0.0156 0.0086 0.0456 0.4222 0.6706
all 0.0161 0.0106 0.0431
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Conclusions and perspectives

@ The structure of the local optima network . ..
...can explain problem difficulty

@ LON-features can be used for performance prediction

@ The sampling methodology gives relevant estimation of LON
features for performance prediction and algorithm portfolio

v

@ Reducing the cost and improving the efficiency of the sampling

@ Other (real-world, black-box) problems and algorithms

@ Understanding the link between the problem definition
and the LON structure

@ Studying the LON as a fitness landscape at a large scale
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In brief

Features :
input of machine learning models

Indeed, explainability starts with features

— Meaningful features for meaningful analysis

e Define the neighborhood relation,
but also search space, and fitness function

e Use/define meaningful local properties,

e Estimation of properties using sampling techniques

— Insights about the dynamics of the optimization algorithm
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Example: Shortest Path
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Multi-objective Shortest Path

cost

O fastest

O cheapest

» time
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Multi-objective Shortest Path

O fastest
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Multi-objective Shortest Path

cost

O fastest

some paths
O are better

® ® which path

is optimal?

O
O cheapest

» time
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One vs. Multiple Objectives

O VS.

O @, O » 11 (max)
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One vs. Multiple Objectives

O better than
O better than
O better than

O @, O » 11 (max)
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One vs. Multiple Objectives
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One vs. Multiple Objectives

| O better than
............ ‘ O incomparable
O incomparable
.............. r.
O
» 1 (max)
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Pareto Dominance

O dominates
O dominated by
» {1 (max)
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Pareto Dominance

» {1 (max)
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Pareto Dominance
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Pareto Dominance

O « — non-dominated,
O <« Pareto-optimal

—

» {1 (max)
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Pareto Front

Pareto front

» {1 (max)
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Variables

Objectives

Complexity

Intractability

Challenges

many, heterogeneous,
Intricate structure

multiple/many, heterogeneous, contflicting,
black-box (expensive)

deciding it a solution is Pareto optimal
is difficult for many problems

number of Pareto optimal solutions
often grows exponentially

How about a Pareto set approximation?

18
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Pareto Set Approximation

Rule of thumb
» closeness to the (exact) Pareto front

~ well-distributed solutions in the objective space

f,

Quality indicators

» scalar value that reflects
approximation quality
e.g. HV, EPS, IGD, R-metrics )

hypervolume
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Local vs. Global Search

local search
multi-objective hill-climber

PLS
[Paquete et al. 2004]

A {Xo}
repeat
select x € A at random
for all X' s.t. ||[x—x'||; =1do
A < non-dominated
solutions from AU {x’}
end for
until stop

global search
multi-objective (1+1)-EA

G-SEMO

[Laumanns et al. 2004]

A {Xo}
repeat
select x € A at random
x' +— x
flip each bit x/ with a rate +
A < non-dominated
solutions from AU {x’}
until stop

20
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Evolutionary Search

population new population

parents offspring
selection b0 0.0.0.8 selection

(1) Dominance-based selection e.g. NSGA-II, G-SEMO
» search process guided by a dominance relation

(2) Indicator-based selection e.g. IBEA, SMS-EMOA
» search process guided by a quality indicator

(3) Decomposition-based selection e.g. MOEA/D
~ multiple aggregations of the objectives

21
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Evolutionary Search

population new population

parents offspring
selection b0 0.0.0.8 selection

(1) Dominance-based selection e.g. NSGA-II, G-SEMO
» search process guided by a dominance relation

(2) Indicator-based selection e.g. IBEA, SMS-EMOA
» search process guided by a quality indicator

(3) Decomposition-based selection e.g. MOEA/D
~ multiple aggregations of the objectives

+ many other parameters ... which algorithm should | use?

21
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Multi-objective Landscape

~ Triplet (X, N, f) such that:
~ Xis a variable space
» N : X = 2Xis a neighborhood relation

» f:X = Zis a(black-box) objective function vector

~ Features to portray multi-objective landscapes
~ Capture what makes a problem hard, a search efficient

» Performance prediction, algorithm selection

23
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Analyze Objectives Independently?

f1 f2

24
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Distribution of Objective Values
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Distribution of Objective Values
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Obijectives Interaction
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Obijectives Interaction

o

Sk
‘oumuumwwmm&%«‘\;'s

WENING

NS 5 A NNl

27

» {1 (max)

| J
I 1o\
|
| - J s
-y | NS
LA NS
—. J

5
|
1 ‘(,,jéi. ..;
=20
SEESENE
i |
y
Ny
4L




Tutorial on Landscape Analysis for Explainable Optimization > 4. Multi-objective Landscapes

Interaction

Obijectives
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Obijective Correlation
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enumeration
"Global" Features
+ PO
£
iz e non-PO A
@& supported
.................... non-supported —
""""" | QO
)0
................. 5
» fi » fi
features from solution features from Pareto
space and Pareto set graph (connectedness)
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sampling
Local Features
X random walk
1. Sampling
» walk (xg, x1, ..., Xp)
S.t. Xt € N(Xt_’|)
» fi
2. Measures SR 2 :
non-supported | O ”m
> autocorrelation
—
(ruggedness) %///////
> average dom ‘ hv
O metrics \-f-\-f-?-‘-r-? metrics
af;(; f1 | » fi
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enumeration

Multimodality
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sampling
Local Features
A adaptive walks
1. Sampling *"*{\’bPLO
» walk (xg, x1, ..., Xp)
S.t. Xt € N(Xt_’|)
and x; dom x; s
non-supported e O "
2. Measures
—
> length £ %///////
> average dom ‘ hv
O metrics \-f-\-f-?-‘-r-? metrics
af;(; f1 | » fi
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GLOBAL FEATURES FROM full enumeration (16)

#po

#supp

hv

#plo
#slo_avg
podist_avg
podist_max
po_ent

fdc

#cc

#sing
#lcc
lcc_dist
lcc_hv
#fronts
front_ent

proportion of Pareto optimal (PO) solutions o(|X])
proportion of supported solutions in the Pareto set

hypervolume-value of the (exact) Pareto front

proportion of Pareto local optimal (PLO) solutions

average proportion of single-objective local optimal solutions per objective

average Hamming distance between Pareto optimal solutions

maximal Hamming distance between Pareto optimal solutions (diameter of the Pareto set)

entropy of binary variables from Pareto optimal solutions

fitness-distance correlation in the Pareto set (Hamming dist. in solution space vs. Manhattan dist. in objective space)
proportion of connected components in the Pareto graph

proportion of isolated Pareto optimal solutions (singletons) in the Pareto graph

proportional size of the largest connected component in the Pareto graph

average Hamming distance between solutions from the largest connected component

proportion of hypervolume covered by the largest connected component

proportion of non-dominated fronts

entropy of the non-dominated front's size distribution

LOCAL FEATURES FROM RANDOM WALK sampling (17)

hv_avg_rws
hv_rl rws
hvd_avg_rws
hvd_rl_rws
nhv_avg_rws
nhv_rl_rws
#1lnd_avg_rws
#1nd rl1 rws
#lsupp-avg_rws
#lsupp-rl_rws
#inf_avg rws
#inf rl1 rws
#sup_avg_rws
#sup_rl_ rws
#inc_avg_rws
#inc_rl rws
f_cor_rws

average (single) solution’s hypervolume-value

first autocorrelation coefficient of (single) solution’s hypervolume-values

average (single) solution’s hypervolume difference-value

first autocorrelation coefficient of (single) solution’s hypervolume difference-values

average neighborhood’s hypervolume-value

first autocorrelation coefficient of neighborhood’s hypervolume-value

average proportion of locally non-dominated solutions in the neighborhood

first autocorrelation coefficient of the proportion of locally non-dominated solutions in the neighborhood
average proportion of supported locally non-dominated solutions in the neighborhood

first autocorrelation coefficient of the proportion of supported locally non-dominated solutions in the neighborhood
average proportion of neighbors dominated by the current solution

first autocorrelation coefficient of the proportion of neighbors dominated by the current solution
average proportion of neighbors dominating the current solution

first autocorrelation coefficient of the proportion of neighbors dominating the current solution
average proportion of neighbors incomparable to the current solution

first autocorrelation coefficient of the proportion of neighbors incomparable to the current solution
estimated correlation between the objective values

O(Lws'#neig)

O(Lrws)

LOCAL FEATURES FROM ADAPTIVE WALK sampling (9)

hv_avg_aws
hvd_avg_aws
nhv_avg_aws
#1nd_avg_aws
#lsupp-avg_aws
#inf_avg_aws
#sup_avg_aws
#inc_avg_aws
length_aws

average (single) solution’s hypervolume-value O(Naws Laws #neig)
average (single) solution’s hypervolume difference-value

average neighborhood’s hypervolume-value

average proportion of locally non-dominated solutions in the neighborhood

average proportion of supported locally non-dominated solutions in the neighborhood

average proportion of neighbors dominated by the current solution

average proportion of neighbors dominating the current solution

average proportion of neighbors incomparable to the current solution

average length of Pareto-based adaptive walks O(Naws €aws)
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/T Chudh
Y
e.g. pmnk Landscapes

n

1 .
max f(x) = — > ¢l (4, %,

n
j=1

s.t. x; € {0,1}

number of variables n
variable interactions k < n
number of objectives m

objective correlation p > -1/(m-1)

...,xjk)

relation

ctive cor

Avg obje

lation

tive corre

Avg objec

http://mocobench.st.net

[Verel et al. 2013]
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/CVOCOLFMIW
http://mocobench.st.net
e.g. pmnk Landscapes

[Verel et al. 2013]

n

1
maxfl-(x)=;ZC( > ]k) e {l,...,m}
i=1

s.t. x; € {0,1}

number of variables n

relation

tive cor|

Avg objec

variable interactions k<~ unknown for
black-box problems

number of objectives m

lation

ctive corre

Avg obje

objective correlation p > -1/(m-1)
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small landscapes

Experimental Setup

60 480 instances (tfactorial design, x30 per setting)

» number of variablesn {10, 11,12,13, 14, 15, 16}
» variable interactions k{0, 1, 2, 3,4, 5, 6, 7, 8}
~ number of objectives m €{2, 3, 4, 5}

» objective correlation p > =1/(m-1)

pe{-0.8,-0.6,-0.4,-0.2,0,0.2,0.4,0.6,0.8, 1}
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Pairwise Feature Correlation
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Experimental Setup

1 000 landscapes (design of experiments)

» number of variables n e [64, 256]
» variable interactions k € [0, 8]
» number of objectives m € [2, 5]

» objective correlation p € [-1/(m—=1), 1]

large landscapes
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large landscapes

Experimental Setup

Algorithms

> Evolutionary search (G-SEMO) vs. Local search (iterated PLS = I-PLS)

Performance

» 30 independent runs per instance, fixed budget of 100 000 evaluations

> (Expected) epsilon approximation ratio to best non-dominated set

Statistics

> Regression = extremely randomized trees (RF variant)
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Prediction Accuracy

large landscapes

MAE

MSE

adjusted R?

algo. | setof features avg std avg std avg std avg std rank
all features 0.003049  0.000285 | 0.000017  0.000004 0.891227  0.024584 0.843934  0.035273 | 1
o local features 0.003152  0.000295 | 0.000018  0.000004 0.883909  0.026863 0.838126  0.037457 | 1
E local features (random walk) 0.003220  0.000314 | 0.000019  0.000004 0.878212  0.028956 0.849287  0.035833 | 1.5
n local features (adaptive walk) | 0.003525  0.000329 | 0.000023  0.000006 0.854199  0.032339 0.834089  0.036799 | 5
O {o,m,n, k_n} 0.003084  0.000270 | 0.000017  0.000003 0.892947  0.020658 0.888440  0.021528 | 1
{m,n} 0.010813  0.000830 | 0.000206  0.000030 | -0.303336  0.188046 | -0.330209  0.191923 | 6
all features 0.004290  0.000430 | 0.000034  0.000008 0.886568  0.026980 0.837249  0.038710 | 1
" local features 0.004359  0.000423 | 0.000035 0.000008 0.883323  0.027274 0.837309  0.038030 | 1
e local features (random walk) 0.004449  0.000394 | 0.000036  0.000008 0.879936  0.026335 0.851421  0.032589 | 1
& local features (adaptive walk) | 0.004663  0.000403 | 0.000039  0.000008 0.871011  0.025903 0.853219  0.029476 | 3.5
{o,m,n, k_n} 0.004353  0.000320 | 0.000033  0.000006 0.889872  0.024505 0.885235  0.025537 | 1
{m,n} 0.016959  0.001473 | 0.000472  0.000077 | -0.568495  0.228629 | -0.600836  0.233343 | 6
random subsampling cross-validation
(50 iterations, 20/10 split)
error < 1% R2> 0.8
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Importance

GSEMO

k_n-
nhv_r1_rws -
hvd_r1_rws -
length_aws -

#sup_avg_aws -
#inc_r1_rws -
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rho 4
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of Features

IPLS

large landscapes
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#lnd_avg_rws -
hv_avg_aws -
#lsupp_r1_rws -
m-

hv_avg_rws -
#sup_r1_rws-
#inf_r1_rws -
k_n-
nhv_avg_aws -
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#inc_r1_rws -
hvd_r1_rws -
#Ind_r1_rws -
hvd_avg_rws -
hv_r1_rws -

n-

hvd_avg_aws -

mean decrease in node impurity

41




Tutorial on Landscape Analysis for Explainable Optimization > 4. Multi-objective Landscapes

large landscapes

Experimental Setup

Algorithms

> NSGA-Il vs. IBEA vs. MOEA/D (default setting, population size = 100)

Performance

>~ 20 independent runs per instance, 1 000 000 evaluations

> (Expected) hypervolume relative deviation (hvrd)

Statistics

> Classification = extremely randomized trees, decision tree
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large landscapes

Automated Algorithm Selection

Algorithm portfolio = {NSGA-II, IBEA, MOEA/D}

Model (classif, RF) = {algo} ~ (n, k/n, m, p, {features})

error rate of best average performance

error rate of best statistical rank

set of features mean std rank mean std rank
all features 0.122222 0.031033 | 1 0.012727 0.014110 | 1
local features 0.123030 0.030521 | 1 0.013737 0.014103 | 1
local features (random walk) 0.118788 0.029187 | 1 0.013333 0.012149 | 1
local features (adaptive walk) || 0.130303 0.029308 | 1 0.015354 0.014026 | 1
{p,m,n, k_n} 0.125859 0.028875 | 1 0.014141 0.013382 | 1
{m,n} 0.413333 0.045533 | 6 0.197374 0.043778 | 6

random subsampling cross-validation
(50 iterations, 20/10 split)

avg-best > 85% stat-best > 98%
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large landscapes

Automated Algorithm Selection

Model (classif, decision tree) = {algo} ~ (n, k/n, m, p, {features})

494 12 493

#Ind_avg_aws <0.12

>=0.12
NSGA-II MOEA/D
469 11 185 25 1 308
/ \ / \
hvd_avg_rws >= 0.008 hv_avg_aws >= 0.18\
< 0.008 <0.18
NSGA-II MOEA/D NSGA-II MOEA/D
375 11 56 /94 0 129\ /22 1 12\ 3 0 296
#Ind_avg_rws < 0.037 hv_r1_rws < 0.96\
>= 0.037 >= 0.96
classification error = 12.6% NSGA-II MOEA/D NSGA-II MOEA/D
77 0 33 17 0 96 21 0 4 118
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large mQAP

Automated Algorithm Selection

[MoeaiD) LascA2 ]

N

Pz W]

e S —

Algorithm portfolio = {NSGA-II, IBEA, MOEA/D)
Model (classif, RF) = {algo} ~ (n, m, p, type, {features})
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large mQAP

Automated Algorithm Selection

[MoeaiD] |AseA2 ]
IBEA

SS\Va
Fefe '@Grimme

Algorithm portfolio = {NSGA-II, IBEA, MOEA/D}
Model (classif, RF) = {algo} ~ (n, m, p, type, {features})

subset of features

classification error

error predicting statistical best

{n,m} .1962 .0332
{type,n,m, p} 1197 .0072
{*_rws,n,m} 1114 .0062
{*_aws,n, m} 1125 .0065
{*_rws, length _aws,n,m} .1089 .0056
{*_rws, x_aws,n,m} 1077 .0063
{x_rws, x_aws, type,n,m, p} .1078 .0063
random classifier .6667 .3810
dummy classifier (MOEA /D) 4200 .1040

random subsampling cross-validation
(100 repetitions, 80/20% split)
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large mQAP

Automated Algorithm Selection

[[MOEA!D NSGA 2L
[MoeaiD) )
IBE 4
\Va ‘
' Fefe '@Grimme

Algorithm portfolio = {NSGA-II, IBEA, MOEA/D}
Model (classif, RF) = {algo} ~ (n, m, p, type, {features})

subset of features classification error | error predicting statistical best
{n,m} .1962 .0332
{type,n,m, p} 1197 .0072
{*_rws,n,m} 1114 .0062
S m} 1125 ATATAYAS
| {*_rws, length _aws,n,m} .1089 .OOgg_I
{*_Tws, x_aws, n,m} 1077 .00
{x_rws, x_aws, type,n,m, p} .1078 .0063
random classifier .6667 .3810
dummy classifier (MOEA /D) 4200 .1040

random subsampling cross-validation
(100 repetitions, 80/20% split)

avg-best > 89%

stat-best > 99%
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large mQAP

Automated Algorithm Selection

(low-cost) features extracted from search budget

3_

NV
1

1.00 -

0.75-

0.25

% statistically outperformed

100% - 106 eval.
for search

~5% - 106 eval. for features
~95% - 10¢ eval. for search

hv-dev < 3.5%
stat-best > 92%
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Sets and Indicators

» Multi-objective optimization is a set problem [Zitzler et al. 2010]

> Seeking the best set of solutions e.g. argmaxxcx hv(X’)

> (Evolutionary) multi-objective algorithms are (local) search
heuristics performing on sets

> How to compare sets?

» Same as for performance evaluation (benchmarking)

> Set preference relation e.g. set dominance, quality indicator

» How does the set preference relation impacts search difficulty?
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Research Questions

s it harder for a multi-objective local search to find a good
approximation set for few or for many objectives?

s it harder for a multi-objective local search to find a good
approximation set with few or with many solutions?

s it harder for a multi-objective local search to find a good
approximation set in terms of dominance or indicator?
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Set-based Multi-objective Landscape

The search space 2 c 2Xis a collection of sets

e.g. sets of mutually non-dominated solutions with a cardinality bound p

The neighborhood N : 2 = 22 is a relation between sets

e.g. two sets are neighbors if they differ by one (neighboring) solution

The set preference relation<is a pre-order between sets
AXBA-(B<A) < A<B
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Set Preference Relations

[Zitzler et al. 2010]

» (weak) Set dominance relation

A<y, B &= VbeB,daeAst.a<,,,b

» Quality indicators
A sdom b = IepS(A) S Ieps(B)

> Indicator-based preference relations

A<, B = I,(A) <L,(B)

~eps eps

A, B < [(A)=21,B)
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Set-based Local Optimality

» Aset Ae 2 isalocal optimal set (LO-set) iff

VB € NA\A , (B < A)

» Aset Ae 2 is astrict local optimal set (sLO-set) ift

VBENANA , A <B
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Number of (s)LO-sets (Adaptive Walks)

neutral walk (dom)

walk (dom)

neutral walk (eps)

walk (eps)

walk (hv)
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Length of Adaptive Walks

2 4 8
set cardinality bound (mu)

E= neutral walk (dom) [l walk (dom) E5 neutral walk (eps) Il walk (eps) B8 walk (hv)
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Research Questions

s it harder for a multi-objective local search to find a good
approximation set for few or for many objectives?

s it harder for a multi-objective local search to find a good
approximation set with few or with many solutions?

s it harder for a multi-objective local search to find a good
approximation set in terms of dominance or indicator?
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Research Questions

s it harder for a multi-objective local search to find a good
approximation set for few or for many objectives?

> set-based landscapes with fewer objectives are more multimodal

s it harder for a multi-objective local search to find a good
approximation set with few or with many solutions?

> set-based landscapes with fewer solutions are more multimodal

s it harder for a multi-objective local search to find a good
approximation set in terms of dominance or indicator?

> set-based landscapes under dominance are more multimodal
... but they are more "strictly" multimodal under indicators
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Visualizing Multi-objective Landscapes
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Visualizing Multi-objective Landscapes

dominance ratio gradient path length local dominance
[Fonseca 1995] [Kerschke, Grimme 2017] [Fieldsend et al. 2019]
Dominance rank ratio (F; = (f1, f1), 2-D, inst. 1) Gradient path length (Fy = (f1, f1), 2-D, inst. 1) Local dominance (F; = (f1, f1), 2-D, inst. 1)
4 -

10°
1071

4 -2 0 2 4 —4 -2 0 2 4 —4 -2 0 2 4

501x501 grid X1 501x501 grid X1 501x501 grid X1

F1: Sphere/Sphere

Dimension 2
https://numbbo.github.io/bbob-biobj/
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Visualizing Multi-objective Landscapes

dominance ratio gradient path length local dominance
[Fonseca 1995] [Kerschke, Grimme 2017] [Fieldsend et al. 2019]
Dominance rank ratio (Fss = (21, f21), 2-D, inst. 1) Local dominance (Fss = (f>1, f>1), 2-D, inst. 1)
| Nl 8 " w =
N 4 ‘-/—_z~ T‘E‘J;h}* {
/’ N “' g »
10° . “;(/ 'r ‘]/.‘
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AT e Y

- C  emm & D oAl
-4 -2 4 —4 -2 0 2 4
501x501 grid X1 501x501 grid X1 501x501 grid X1

F55: Gallagher 101 peaks/Gallagher 101 peaks

Dimension 2
https://numbbo.github.io/bbob-biobj/

62


https://numbbo.github.io/bbob-biobj/

8Search space projection (F; = (f1, f1), 5-D, inst. 1)
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Visualizing Multi-objective Landscapes

line cuts
[Brockhoff et al. 2022]

h jecti Fi1=(f1,f -D, inst. 1
BSearc space projection (F1 = (f1, f1), 5-D, inst. 1) Unscaled obj. space (F1 = (f1, f1), 5-D, inst. 1)

reference set (693 of 6019508 points)
cuts through single optima

cut through both optima

two random directions

random cut in pla(}%H\rough optima

® reférence set (3997 9508 points)
—90 A uts through singl
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2 g
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> © —120 A
9 2
'8 o
o : O —130 -
o f n
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direction of optima

° first objective

F1: Sphere/Sphere

Dimension 5
https://numbbo.qgithub.io/bbob-biobj/
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Visualizing Multi-objective Landscapes

line cuts
[Brockhoff et al. 2022]

Search space projection (Fss = (21, f21), 5-D, inst. 1 Search space projection (Fs5 = (f21, f21), 5-D, inst. 1 : ,
8 P bro) (Fss = (fa1, f21) ) 8 ﬂp P _J (Fss = (fa1, 1) ) Unscaled obj. space (Fss5 = (f>1, 1), 5-D, inst. 1)
80 4 o reference set (3994 of 3302932 points)
6 6 cuts through single optima
- cut through both optima
c 60 two random directions
4 O 4+ . :
s = random cut in plane through optima
O ()
(V] >
2 7] 't 2 T E ———
© )
G o
0- Lo o
2 I
O ©
'_5 C
-2 c -2 S
(] ()
— o n
_4J @ reference set (107 of 3302932 points) T —al ®
cuts through single optima o cuts/through single optima
- cut through both optima = cutthrough both optima
=61 two random directions - —61 twp random directions
. == random cut in pIaQ/gH'nro gh optima . == random cut in pIaQ/%erough optima . : . : : .
- T T T T T T T - T T T T T T T 0 10 1 20 25
-8 -6 -4 -2 0 2 4 6 8 -8 -6 -4 -2 0 2 4 6 8 > first ob'ect5ive
X1 direction of optima )

F1: Sphere/Sphere

Dimension 5
https://numbbo.qgithub.io/bbob-biobj/
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COCO / bbob-biobj

https://numbbo.qgithub.io/bbob-biobj/

| A HOME COCO CODE DATA ARCHIVE POSTPROCESSED DATA COCO HOME

Visualizations of problem landscapes

Home
Function definitions

Visualizations PlOtS

Gradient angle plots Show plots in ;l @ LI columns (click on Dimension/Function/Instance/Visualization type below to show all plots for
Postprocessed data the chosen category)

Dimension Function Instance _
e )l k)l i) < 2

Search space (Fss = (51, f1), 2-D, inst. 1) s Search space (Fss = (51, f1), 2-D, inst. 1) Unscaled obj. space (Fss = (f1, f21), 2-D, inst. 1) Normalized obj. space (Fss = (fas. fu). 2-D, inst. 1)
e reference set (285 of 2546344 points) . e reference set (275 of 2546344 points) e set Domif e rank ratio (Fss = (f1, f1), 2-D, inst. 1)
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moPLOT

https://schaepermeier.shinyapps.io/moPLOT/

moPLOT Landscape Explorer

Select MOP Upload Data PLOT Gradient Field Heatmap Set Transitions Contours Local Dominance Local PCP Global PCP

Benchmark set
1.00

DTLZ Functions v
20

Function

DTLZ7 v o

Dimensions Objectives

2 S 2

<>

' 0.50

Y2

Resolution per dimension

300

<>

0.25
Evaluate & Download

Visualization Options 000

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

Y1
Enable PLOT and heatmap

Dimension =2,3 Objectives =2, 3
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(Compressed) PLOS-net

/v rank w.r.t. non-dominated sorting

Manuel
Lépez-lbdnez Aguirre Tanaka

Sébastien

7] S 1 S
. m‘.\:’l .
?.? """" 3 \1:“5.‘:.:;.«_‘ ?::.""",2 FRES
EEN .
- .. .2.1 . ) e g
f ’
Full landscape PLOS-net CPLOS-net
[PPSN"18] objective-space layout

—

display for 2 (/3) objectives

Hernén Kiyoshi

Bilel Gabiriela
Derbel Ochoa

x-axis = graph layout
(stress
majorization)

CPLOS-net
rank layout

[GECCO'23] /

scale to any number of objectives
invariant to some objective transformations
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Uncompressed vs. Compressed PLOS-net

0701
o5
N (604  0.60-
055 1
050 ey PMnk-landscape
«+ »p=04
. > m=2
o > n=16

log(rank)
log(rank)
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Uncompressed vs. Compressed PLOS-net

uncompressed compressed
0.70 A EE 0.70 4 E
0.65 A EE 0.65 1 E
EE % E
& 0.60- n 60 :
b :: .
0.55 4 EE 0.55 - E
o |1t :
050 050 : pmnk-landscape
" ' log(rank)
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: 2 » m=2
. 1
5 o » n=16
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68

pmnk-landscape
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smooth landscapes

rugged landscapes

log(rank)

ro
1

log(rank)
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C-PLOS-net visualization for 2 objectives

ro

conflicting objectives
r=-0.4 k=1

log(rank)

ro
1

independent objectives

r=0.0 k=1

log(rank)

ro

correlated objectives

t3 %
° L OTO. .. ‘. o l“
A 006 o 96 oo °
6 o @ °
A a o o @

isolated

o FALSE
A TRUE

log(rank)

S = N W H~ O
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C-PLOS-net visualization for 2 objectives

ro

conflicting objectives
r=-0.4 k=1

more nodes, fewer cc

log(rank)

ro
1

independent objectives
=0.0 k=1

log(rank)

correlated objectives
r=0.4 k=1

ro
.—

U R TR B P
A 606 o 96 oo °
o o a °
o Q@

e

fewer nodes, more cc

isolated

o FALSE
A TRUE

log(rank)

S = N W H~ O
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C-PLOS-net visualization for 2 objectives

ro

conflicting objectives
r=-0.4 k=1

more nodes, fewer cc

log(rank)

ro
1

independent objectives

r=0.0 k=1

log(rank)

correlated objectives
r=0.4 k=1

ro
.—

more
nodes

U R TR B P
A 606 o 96 oo °
o o a °
o Q@

e

isolated

o FALSE
A TRUE

log(rank)

S = N W H~ O

fewer
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nodes
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C-PLOS-net visualization for 3 objectives

conflicting objectives  independent objectives  correlated objectives
r=-0.4 k=1 p=0.3 1=0.0 k=1 p=0.6 r=0.4 k=1 p=0.9

log(rank)

isolated

o FALSE
A TRUE

pruning : p € {0.3, 0.6, 0.9} for p € {-0.4.0.0, 0.4}
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Network metrics

PLOS-nets metrics (24 + 10)

» Support and complement
our visual intuitions

» Adapted from
complex networks

» Meaningful for search

metric

description

uncompressed and compressed networks

node_n
node_pareto_n
node_adj_pareto_n
node_rank_worst
degree_avg
rank_degree_cor
isolated_n
pareto_isolated_n
isolated_rank_avg
edge_density
assort_degree
cc_n

cc_max

cc_avg
cc_max_pareto
cc_pareto_max
cc_pareto_avg
cc_rank_avg_avg
cc_rank_best_avg
path_length_avg
path_length_max
path_pareto_exist
path_pareto_avg

path_length_pareto_avg

proportion of nodes

proportion of Pareto nodes (nodes with rank 1)
proportion of nodes adjacent to a Pareto node
maximum (worst) node rank

average degree of nodes

node rank-vs-degree correlation

proportion of isolated nodes

proportion of Pareto nodes that are isolated
average rank of isolated nodes

density of edges

assortativity by degree

proportion of connected components (cc)

size of largest cc

average size of cc

size of largest cc that contains a Pareto node
(average) size of cc with most Pareto nodes
average number of Pareto nodes per cc

mean of average rank per cc

mean of best rank per cc

average path length

longest path length (diameter)

number of nodes connected to a Pareto node
avg. nb. of Pareto nodes a node is connected to
avg. (existing) path length to a Pareto node

compressed networks

node_width_avg
node_cmpr
strength_avg
strength_pareto
rank_strength_cor
edge_weight_avg
edge_cmpr
dist_avg

dist_max
dist_pareto_avg

average node width

compression rate over nodes

average node strength

sum of strengths of Pareto nodes

node rank-vs-strength correlation
average edge weight

compression rate over edges

average distance

longest distance

avg. dist. to Pareto nodes (existing paths)
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Interpretable algorithm prediction

Classitication Model (CART tree) = {algo} ~ {metrics}

48 238 106

W G-SEMO 100%
EEg‘A_” assort_degree >= 0.065
<0. 065
NSGA Il
35 222 7 13 16 99
67% 33%
path_ Iength avg <0.44 edge_ welght avg >= 0.069

>= 0.44 < 0.069

(NSGA-ID NSGA-I]
29887 6 134 0 13 13 24 0375
32% 36% / 13% 20%
node_n < 0 0027 cc_pareto_max < 0.54
>= 0.0027 >= 0.54
NSGA-I] G-SEMO

— o)
730 22 85 7 741 69 23 Accuracy = 84%
3% 29% 3% 10% (NSGA-Il = 61%)
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Landscape Features for
Continuous MO Optimization
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Continuous MO Landscape Features

» Discretize space + ‘standard’ measures from landscape analysis
» Budget = n solutions, from random latin hypercube design

» Neighbors = d closest solutions (euclidean dist. in var. space)

variable space (2D prolectlon d=10) objective space (d =10,k =1)
0.774 "8 "L B retiptier
0.76
N
0.75 A
0.74 -
.5 5.0 0.67 0.68 0.69 0.70 0.71

75



Tutorial on Landscape Analysis for Explainable Optimization > 4. Multi-objective Landscapes

Benchmark

Sébastien Benjamin  Ciprian John
Verel Lacroix  Zavoianu McCall
Interpolated Continuous MOPs
d  number of variables g .
f interpolation 7 e(xsy) : ;
k  power of interp = if e (x,sj) # 0 for all j
seed_n  proportional number of seeds |S| fs.u,(x) = Zj= T
nd_seed_n  proportion of non-dominated seeds |S,,4| A=) . .
dom_seed_n  proportion of dominated seeds |Sg| Ui, j if e (x, Sj ) = 0 for some j

fs,u;

fS,U2

v
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1.00

0.00+

0.00

T
0.25

v
0.50

T
0.7%

v
0.25

v
0.50

v
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1 000+

1.0
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v
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T
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T
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T
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v
0.75

76



Tutorial on Landscape Analysis for Explainable Optimization > 4. Multi-objective Landscapes

Importance of Features
(budget = 50000)

Model (classification, decision tree) = {algo} ~ {features}

MOEA/D-DE-DRA
509 125 545 21

dist f max>=0.19

<0.19
(NSGA-ID (MOEA/D-DE-DRA>
% 424 108 112 17 75’17 433 4
slo_n >=0.008 \ hvd_cor_neig < 0.3 \
<0.008 >=0.3
\
(NSGA-ID @OEA/D DE-DRA) (MOEA/D-DE-DRA) (MOEA/D-DE-DRA)
394 103 661\6 /'ao 5 46 /75 9 165 10 8 268 2
dist_f_dist_x avg neig <0.11 sup_cor_neig >= 0. 28\ nhv_avg_neig <0.11 x
>=0.11 <028 >=0.11
\
@A)  WOEAD-DEDW (VSGAD  (UOEAD-DE-DRR
33550636 53310 10000 65461 i315i 47 6 150 0
inf_cor nelg >= 0.22 \ nhv_cor nelg <0. 24\ hvd_avg_neig < 23e—6\
<0.22 >= 0 24 >= 23e-6
\
(T @OEADDEDRD (NSGATD (WOEAD DEDRA
38 10 2 5 21 431 5 9231 11 3 43 0 250 7 2 3380

classification error = 22.58% 77
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Prediction Accuracy

Model (classification, random forest) = {algo} ~ {features}
random subsampling cross-validation (x 50, 80/20% split)

budget = 10000 budget = 20000 budget = 50000

ol F = T
| o : %

e et sigoritn - ¥
LT il

0.1+

error predicting

0.5 * == =

. sample size

] ==
error predicting one o [ * * ‘ NA

of the statistical ‘ 500
best algorithm(s) *# ‘ 1000
0.1+ * w * LI 1 - 200xd

relative hypervolume 0.0101 A *
deviation to virtual
best algorithm (g3 * # # * ‘ ‘ ‘ ‘ ‘ ‘
' °

0.001
\¢ e N e e \! e A\
@ 3\ RS 29 G o 3o\ o e ae® o0 @
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Continuous MO Landscapes

Towards Constructing a Suite
of Multi-objective Optimization Problems

with Diverse Landscapes

Andrejaana Andoval2(®®)  Tobias Benecke®, Harald Ludwig?, and Tea Tusar!-2

16 \l
) i14 o g 10
E— % o | —
\ é - fis|| - . 23
. /|« é\/
7 14 09 112 04 107 06 i11 (03 15 i13 14 (08 105 i10 i02 \__
- J —

Fig. 1. Problem similarity heatmap for the 15 instances of the 2-D function combina-
tion (f1, fs) (function Fy in the bbob-biobj suite) and their corresponding landscape
visualizations using dominance ranking ratio [3,7] show that the size of the Pareto
set (yellow curves) is proportional to the similarity among instance. The instances are
numbered as in the bbob-biobj suite. (Color figure online)
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IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 27, NO. 5, OCTOBER 2023

An Instance Space Analysis of Constrained
Multiobjective Optimization Problems

FEATURES USED TO CHARACTERIZE THE MULTIOBJECTIVES LANDSCAPE OF CMOP

Hanan Alsouly ™, Michael Kirley ', and Mario Andrés Muiioz

esS

Type Feature Description Source  Focus
upo_n Proportion of unconstrained PO solutions [27] Set-Cardinality
uhv Hypervolume-value of the ljﬁ‘ 28] Set-Distribution
corr_obj correlation between objective values [29] evolvability
mean_f Average of unconstrained ranks [12] y-distribution
std_f Standard deviation of unconstrained ranks 5] y-distribution
max_f Maximum of unconstrained ranks 5] y-distribution
skew_f Skewness of unconstrained ranks [5] y-distribution
kurt_f Kurtosis of unconstrained ranks [5] y-distribution

Global kurt_avg Average of objectives kurtosis [5] y-distribution
kurt_min Minimum of objectives kurtosis [5] y-distribution
kurt_max Maximum of objectives kurtosis [5] y-distribution
kurt_rnge Range of objectives kurtosis [5] y-distribution
skew_avg Average of objectives skewness [5] y-distribution
skew_min Minimum of objectives skewness [5] y-distribution
skew_max Maximum of objectives skewness [5] y-distribution
skew_rnge Range of objectives skewness [5] y-distribution
f_mdl_r2 Adjusted coefficient of determination of a linear regression model for varibles and [5] variable scaling

unconstrained ranks
f_range_coeff Difference between maximum and minimum of the absolute value of the linear model [5] variable scaling
coefficients

dist_f_avg_rws Average distance from neighbours in the objective space [12] evolvability
dist_f_r1_rws First autocorrelation coefficient of dist_f_avg_rws [12] ruggedness

Random Walk dist_f_dist_x_avg_rws Ratio of dist_f_avg_rws to dist_x_avg_rws [12] evolvability
dist_f_dist_x_avg_rl First autocorrelation coefficient of dist_f_dist_x_avg_rws [12] ruggedness
nuhv_avg_rws Average unconstrained hypervolume-value of neighborhood’s solutions [29] evolvability
nuhv_rl_rws First autocorrelation coefficient of nuhv_avg_rws [29] ruggedness

4 1
3t 0.9
2t \ 0.8
1427 0.7
1t . .
' 0.6
(0}3
o~
N 0.5
-1t N
0.4
2t .
. 0.3
31 0.2
4t 0.1
5 - 0
-4 -2 0 2 4
Z1
FEATURES USED TO CHARACTERIZE THE MULTIOBJECTIVES LANDSCAPE OF CMOP
Type Feature Description Source  Focus
upo_n Proportion of unconstrained PO solutions [27] Set-Cardinality
uhv Hypervolume-value of the UPF (28] Set-Distribution
corr_obj correlation between objective values [29] evolvability
mean_f Average of unconstrained ranks [12] y-distribution
std_f Standard deviation of unconstrained ranks [5] y-distribution
max_f Maximum of unconstrained ranks (5] y-distribution
skew_f Skewness of unconstrained ranks [5] y-distribution
kurt_f Kurtosis of unconstrained ranks [5] y-distribution
Global kurt_avg Average of objectives kurtosis [5] y-distribution
kurt_min Minimum of objectives kurtosis (5] y-distribution
kurt_max Maximum of objectives kurtosis [5] y-distribution
kurt_rnge Range of objectives kurtosis [5] y-distribution
skew_avg Average of objectives skewness (5] y-distribution
skew_min Minimum of objectives skewness (5] y-distribution
skew_max Maximum of objectives skewness [5] y-distribution
skew_rnge Range of objectives skewness [5] y-distribution
f_mdl_r2 Adjusted coefficient of determination of a linear regression model for varibles and (5] variable scaling
unconstrained ranks
f_range_coeff Difference between maximum and minimum of the absolute value of the linear model [5] variable scaling
coefficients
dist_f_avg_rws Average distance from neighbours in the objective space [12] evolvability
dist_f_rl_rws First autocorrelation coefficient of dist_f_avg_rws [12] ruggedness
Random Walk dist_f_dist_x_avg_rws Ratio of dist_f_avg_rws to dist_x_avg_rws [12] evolvability
dist_f_dist_x_avg_rl First autocorrelation coefficient of dist_f_dist_x_avg_rws [12] ruggedness
nuhv_avg_rws Average unconstrained hypervolume-value of neighborhood’s solutions [29] evolvability
nuhv_rl_rws First autocorrelation coefficient of nuhv_avg_rws [29] ruggedness

FEATURES USED TO CHARACTERIZE THE VIOLATION LANDSCAPE OF CMOP. THE PROPOSED FEATURES MARKED AS NEW,

WHILE THE (*) INDICATES THAT THE FEATURE HAS BEEN MODIFIED TO CHARACTERIZE CMOP

TABLE III

FEATURES USED TO CHARACTERIZE THE VIOLATION LANDSCAPE OF CMOP. THE PROPOSED FEATURES MARKED AS NEW,
WHILE THE (*) INDICATES THAT THE FEATURE HAS BEEN MODIFIED TO CHARACTERIZE CMOP

Type Feature Description Source  Focus Type Feature Description Source  Focus
min_cv Minimum of constraints violations [5] * y-distribution min_cv Minimum of constraints violations [5] * y-distribution
skew_cv Skewness of constraints violations [5] * y-distribution skew_cv Skewness of constraints violations [5]* y-distribution
Global Kurt_cv Kurtosis of constraints violations [5] * y-distribution Global kurt_cv Kurtosis of constraints violations ) [5] * y-distribution
cv_mdl_r2 Adjusted coefficient of determination of a linear regression model for varibles and [5] * variable scaling cv_mdl_r2 Adjusted coefficient of determination of a linear regression model for varibles and [5] * variable scaling
violations violations
cv_range_coeff Difference between maximum and minimum of the absolute value of the linear model [5] * variable scaling cv_range_coeff Difference between maximum and minimum of the absolute value of the linear model [5] * variable scaling
coefficients coefficients
dist_c_corr Violation-distance correlation [30] *  deception dist_c_corr Violation-distance correlation [30] *  deception
dist_c_avg_rws Average distance from neighbours in the constraints space [12] *  evolvability dist_c_avg_rws Average distance from neighbours in the constraints space [12] *  evolvability
dist_c_rl_rws first autocorrelation coefficient of dist_c_avg_rws [12] *  ruggedness dist_c_rl_rws first autocorrelation coefficient of dist_c_avg_rws [12] *  ruggedness
dist_c_dist_x_avg_rws  Ratio of dist_c_avg_rws to dist_x_avg_rws [12] ¥ evolvability dist_c_dist_x_avg_rws  Ratio of dist_c_avg_rws to dist_x_avg_rws [12] *  evolvability
dist_c_dist_x_rl_rws First autocorrelation coefficient of dist_c_dist_x_avg_rws [12] *  ruggedness dist_c_dist_x_rl_rws First autocorrelation coefficient of dist_c_dist_x_avg_rws [12] #  ruggedness
Random Walk ~ NCV-ave_rws Average single solution’s violation-value New evolvability Random Walk ~ ev-ave_rws Average single solution’s violation-value New evolvability
nev_rl_rws first autocorrelation coefficient of ncv_avg_rws New ruggedness nev_rl_rws first autocorrelation coefficient of ncv_avg_rws New ruggedness
nnev_avg_rws Average neighborhood’s violation-value New evolvability NNCV_avg_rws Average neighborhood’s violation-value New evolvability
nnev_rl_rws first autocorrelation coefficient of nncv_avg_rws New ruggedness nnev_rl_rws first autocorrelation coefficient of nncv_avg_rws New ruggedness
bnev_avg_rws Average violation-value of neighborhood’s non-dominated solutions New evolvability bnev_avg_rws Average violation-value of neighborhood’s non-dominated solutions New evolvability
bnev_rl_rws first autocorrelation coefficient of bncv_avg_rws New ruggedness bnev_rl_rws first autocorrelation coefficient of bnev_avg_rws New ruggedness
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Constrained Continuous MO Landscapes
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The proposed ELA features to characterize CMOPs categorized into four groups: space-filling design,
information content, random walk, and adaptive walk. “New” indicates that the corresponding feature is
proposed in this paper.

Space-filling design features

N# Number of feasible components New
Z min Smallest feasible component New
Z med Median feasible component New
F max Largest feasible component New
O(F max) Proportion of Pareto-optimal solutions in % .« New
F opt Size of the “optimal” feasible component New
Pk Feasibility ratio [19]
Prmin Minimum correlation [18]2
Prmax Maximum correlation [18]¢
Pas, Proportion of boundary Pareto-optimal solutions New
Information content features

Hmax Maximum information content [27]°
& Settling sensitivity [27]°
Mo Initial partial information [27]°
Random walk features

(PoF)min Minimum ratio of feasible boundary crossings [18,19]
(PoF) med Median ratio of feasible boundary crossings [18,19]
(PoF)max Maximum ratio of feasible boundary crossings [18,19]
Adaptive walk features

N Number of basins [28]°
B min Smallest basin New

B ed Median basin New
PBrnax Largest basin New
(2¥) min Smallest feasible basin New
(BF) med Median feasible basin New
(2F) max Largest feasible basin New
UZg Proportion of feasible basins New
VU(B) med Median constraint violation over all basins New
V(2) max Maximum constraint violation of all basins New
V(Bmax) Constraint violation of %Zmax New
O(Bmax) Proportion of Pareto-optimal solutions in %max New 81
Bopt Size of the “optimal” basin New
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Conclusions

> Many (E)MO algorithms, few recommendations w.r.t. target problem
»~ where are the key differences in behavior among them?
» Multi-objective landscapes (interpretable features, visualization)
» Multi-objective optimization is a set problem
» solution-level features capture information about the neighboring set

» set-level features are insightful, but also challenging

Related Issues
» Multi-objectivization
> Multi-objective landscape features from decomposition

» Many-objective landscapes (they tend to get easier in some respects)

>
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General Conclusions

Landscape analysis: valuable tool for understanding / explaining
problem difficulty and algorithm performance / behavior

Bridge the gap between theory and practice

Combinatorial vs. continuous landscapes, mixed landscapes
Fitness vs. violation landscape for constraint-handling
Landscape-aware automated algorithm selection and configuration

Key issues in benchmarking: heterogeneous problems, algorithm
complementarity, multiple performance measures, anytime...

Fitness landscape for real-world applications (e.g. in ML/ DL)
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General Conclusions

Automated pert. prediction, algorithm selection, configuration
» Computationally intensive, repeated from scratch for each scenario

» What have we learn from this?

How about the knowledge acquired by EC researchers to make
optimization more explainable?

> ... and EC algorithms more reliable?

A prerequisite is interpretable landscape tools

> can be complemented by XAI/XML

Few (interpretable) features vs. many features

» Unexplainable features: artifacts or unexpected discovery?

Towards explainable landscape analysis (XLA) © Katherine ;)
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Further Reading
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A Survey of Advances in Landscape Analysis for Optimisation

Katherine Mary Malan

Department of Decision Sciences, University of South Africa, Pretoria 0002, South Africa; malankm@unisa.ac.za

Abstract: Fitness landscapes were proposed in 1932 as an abstract notion for understanding biological
evolution and were later used to explain evolutionary algorithm behaviour. The last ten years has
seen the field of fitness landscape analysis develop from a largely theoretical idea in evolutionary
computation to a practical tool applied in optimisation in general and more recently in machine
learning. With this widened scope, new types of landscapes have emerged such as multiobjective
landscapes, violation landscapes, dynamic and coupled landscapes and error landscapes. This survey
is a follow-up from a 2013 survey on fitness landscapes and includes an additional 11 landscape
analysis techniques. The paper also includes a survey on the applications of landscape analysis
for understanding complex problems and explaining algorithm behaviour, as well as algorithm
performance prediction and automated algorithm configuration and selection. The extensive use of
landscape analysis in a broad range of areas highlights the wide applicability of the techniques and
the paper discusses some opportunities for further research in this growing field.

Keywords: fitness landscape; landscape analysis; violation landscape; error landscape; automated
algorithm selection
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